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CONSTRUCTION 

Ii’IiiIc m:tny ilrings : L ~ C  sought for in :i slide rule, one is foremost 
:iI)ovc. all otl1t~r.s . . . ~iriclric~sl.ioiicd acc:uracy at all times, no matter 
\vll: it  t I i ( b  cori(1ilions. The owner and user of the VEItSALOG Slide 
I < r i l t t  w i l l  I ) ( )  gr:it,ilicd t o  Imow th:it the ultimate in craftsmanship, care 
: t n d  c:s:ical II(’SS in manufackire has been followed to produce the very 
Iirrc.st, most, ac:curat,c slidc rule sold today. 

To inriirc~ :icwir:ic:y, your VICIISALOC Slide Rule is constructed 
frlllll (;:~~Y~llllly selc cd :md 1:iminated bamboo. 
u x s  c*liosc*tr I)(v*:r.nsc of i! s :tl)ilit,y to resist contraction and expansion 
iirrtl(~r v:i.ryirrg c:lim:itic wntlitions. Bamboo has natural oils, imper- 
wpt i l ) lc  t o  t lit: t ,owli, constmt,ly lubricating the bearing surfaces and 
:illowing :i sinoothncss of action not found in any other wood or metal. 
Ywrs of us(’ ni:ilic it opcr:it,e more easily. White celluloid faces are 
usctl for (my  rwdirig ant1 :ill scale graduations and figures are deeply 
in:tc*liinc~ ( * i t (  irit o t,Iw f : t w  to insrire a 1ifct)ime of accurat,c calculations. 

111 your. I’OS’I’ VlCltS!lI,O(; SIJDIS ILIJLE, you have truly one of 
t l i c  l i i i ( s s i  : i i i c l  m o s t  exact instruincnts this century’s ingenuity is able 

Bamboo is tough, and 

to p”otlilc*c. 

TIIII: P1tEI)ICItICI~ POST COMPANY 

Our dwpcst gratitude is extended to Professor E. I. Fiesenheiser, 
1’1~ofc~ssc~r I < .  .A. I~ridcnholzcr, and Associate Professor B. A. Fisher 
f o r  thcir d l o r t h  throughout the designing and developing stages of 
t l iv  V I C l K ~ 1 , O G  rule, also for the writing and edification of this text 
book of rnst ruct ions. 

It is ii triliutv to the engineering profession, and to the never ending 
clToi.1 s of t Iiosc inen who :&re devoting their lives educating and training 
the cngiriecr of the future. 

PREFACE 

The professional engineer or the engineer in training is to be con- 
gratulated for having purchased a slide rule. Among computing tools 
there is no other which contributes more to speed and efficiency and to 
reducing the labor of involved calculations. The Post Versalog Slide 
Rule is among the finest of such computing instruments. I ts  design is 
the result of much study and of many consultations with a panel of 
engineering teachers who practice engineering and reprcsen t major 
engineering fields. While this rule will be of use to other professional 
people such as scientists, accountants and mathematicians, it \vas de- 
signed primarily with the needs of the engineer in mind. 

Every effort has been made to select a wide range of the most useful 
scales and to arrange these logically and conveniently. An atlecluate 
scale designation system with a consistent coloring scheme 11:~s h e n  
provided for the trigonometric scales. These improvemcnts, clcvisc.tl by 
Professor B. A. Fisher, will be appreciated by users of the slide rule. 
Four log log and four reciprocal log log scales have been proviclcd in- 
stead of the usual three of each, thus extending the range of niinibcrs. 
The convenient, symmetrical arrangement of these log log scales should 
be regarded as a definite improvement. 

An soon as the student engineer acquires the slide rule lie sliould 
devote time to study of the instrument. Such time and f2frol.t will he 
rewarded by increased efficiency and accuracy and fewer errors during 
examinations. He should practice to develop mastery of all of the scales 
and their most ejiaent uses. Not to do so is to handicap himself. Learning 
to  use only one or two scales is like owning an expensive new automobile 
which one drives around only in low gear, either not realizing that there 
are higher gears, or failing to  let the mechanism shift into high for 
smooth speedy operation. 

This instruction manual has been written for study without the aid 
of a teacher. However, a knowledge of basic elementary m:ithcm:~tic.s is 
assumed. The student engineer will probably have this kno\vledgc ivlicn 
he acquires the slide rule. Although the manual contains many esainples 
of mathematical problems as well as engineering problems, no effort is 
made to teach either mathematics or‘ engineering in this booli. 

Ideas and thoughts of others will be found intermingled ivith those 
of the author. Grateful acknowledgment is therefore made to t hc fol- 
lowing: Mr. Walter G. Hollmann, Director of Research for the Frederick 
Post Company; Mr. Herman Ritow, Consultant; other teachers and 
writers; and to students in the classroom. 

E. I. FIESESI~EISER 
CHICAGO, ILLINOIS 

Feb. 1961 
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Chap t e r 1 

DESCRIPTION,  ADJUSTMENT,  CARE AND 
M A N I P U L A T I O N  O F  THE SLIDE RULE 

In the study of this chapter, the reader should have the slide rille 
before him and should refer to Fig. 1 (a) and (b), in which the various 
parts of the rule are indicated. 

General Description. The slide rule consists essentially of 3 parts: 
the body, or fixed part; the slide, which slides in grooves in the body; 
and the cursor, with the hairline in the center. Scales appear on both 
the body and the slide, and on both sides of the rule. This means 
that either one or the other, or both sides, may be used in making a 
calculation. 

The body and slide are constructed of laminated bamboo with an 
overlay of white plastic. This type of construction insures against warp- 
age and provides unusual dimensional stability so that the rule will be 
accurate and operate smoothly over a wide range of weather conditions. 

Adjustment. Your Versalog slide rule should come to you in perfect 
adjustment. However, in case it is dropped or severely jarred, the pre- 
cise adjustment may be lost. In  any case it is advisable to check the 
adjustment occasionally to  make sure that the scale readings are as 
accurate as the instrument will allow. In order to check and adjust the 
slide rule the following procedure may be followed. 

With the rule held so that the shorter body member is uppermost, 
move the slide until the C and D scales coincide perfectly. The DF 
scale on the upper body member should now be in alignment with the 
identical CF scale of the slide. If it is not, the upper body member must 
be moved to right or left. I n  order to adjust this member, loosen the 
two screws in the metal end bars by about one-half turn and move the 
upper body member until the D F  scale coincides with the CF  scale, 
then tighten the screws. 

The hairline should now be moved to coincide with the left indcs 
(the 1 mark) of the D scale. I n  this position the hairline should alho 
coincide with the symbol T of the DF scale. If it does not, the hairline 
is not perpendicular to the slide rule scales. I t  must be adjusted 30 t h t  
it coincides with the ends of both D and D F  scales. I t  may be ndjustwl, 
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2 A DJ U 8’1’ X I  b;NT, CARE, hl A N  IPULATION 

if necessary, by loosming the four screws of the metal cursor frame which 
surrounds tlic: g1:iss. The g l : ~  may then be moved until perfect align- 
ment is ot)t:iiii(d, and thc screws carefully retightened. 

The rule m:iy now be turncd over for examination of the hairline 
ndjustmentJ on tlic reverse side. The hairline should be in perfect align- 
mcnt witli the left index of the D scale as well as with the l/e mark of 
the LL/3 upper scale. If it is not, this hairline must be moved. This is 
done again by loosening the four screws of the metal cursor frame, mov- 
ing the glass, and rctightening the screws. When properly set, both 
hairlines should nligri simultaneously. In making this adjustment care 
must be escrciscd not to disturb the position of the hairline previously 
adjtisted. 

In case it is dilficult to pus11 the slide, the body parts may be gripping 
it too tiglit,ly. To adjust for easy operation, loosen a screw at  one end 
onby on tlic :ttijiist:hle 1):Lrt of tlic body. This end may then be pulled 
away from t>lie slide. The screw may then be retightened and the opera- 
tion repeated at. t,he other end. By adjustment of one end at a time the 
alignment of t h  scales is not affected. One of the properties of the 
bamhoo wood construction is that the operation of the slide becomes 
easier a i i t i  smoother with age and usage. 

Care of Your Versalog Slide Rule. It is important to keep the 
slid(. rule :LS clc:in possible. Keeping the hands clean and keeping the 
rule i n  its case whcii not in use will help. To clean the scales a slightly 
moist cloth m:iy lw  usccJ. To romove p:wticles from under the glass of 
the curmr, :L ii:irro\v htrip of ptLper may be cut and placed over the 
sc:tlcs. Tlic cursor niay t I r c . n  lw run o v ( ~  the paper, pressing down on 
tlic cursor at8 the s:tme tinic.. ‘rhis will (+ause the dirt particles to adhere 
to tlic slrip of p p v r .  

Manipulation. In setting the hairline thc cursor is generally pushed 
with one hand to the neighl)orhood of the, desired setting. It may then 
bc sct :tcc.rir:~tc~ly by pl:wing the tliuml)s of both hands against either 
side of the cursor frame, pushing a little more with one thumb than the 
other to set the hairline. 

In setting the slide it may be moved to the neighborhood of the de- 
sired set ting with one hand. lTsually one end of the slide projects beyond 
the body of the rule. Should the right end project, the right hand is then 
used to make the cmct  setting. The thumb and forefinger of the hand 
grasp the slidc and at the same time press against the end of the body 
of the rule. By this control an exact setting of the slide may be made 
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very quickly, the forefinger and thumb doing the precise work. In case 
the left end of the slide projects, the left hand is used in the same manner 
to make the setting. 

The above methods of manipulation are those used by the writer but 
it is realized that the student may develop his own methods. Those 
given, therefore, should be regarded merely as suggestions from one who 
has learned to use the instrument. 



Chapter 2 

I 

THE SCALES O F  T H E  SLIDE RULE 

This cliaptt~r contains a hrief description of the scales and how to 
rend them. Much more information concerning the scales and their uses 
is given in later chapters. This discussion, however, should provide 
the student with a background and a general acquaintance with the 
slide rule. 

Scale Descriptions. The Post Versalog Slide Rule has 23 scales, 
located and arranged in a convenient and logical manner. These scales 
n i l 1  permit the solution of any kind of arithmetical problem except 
adding and siibtracling. 1Cac.h scale is designated on the rule by a letter 
or a combi~iation of letters and symbols which appears at the left end 
of the scale. All of the scales (except the L scale) are logarithmic, which 
means that the distancw along the scales are proportional to the logar- 
ithms (to ihe base 10) of the numbers or functions represented. 

Probably the sc,zles most oftcn used are those marked C and D. For 
convenience these appear on both sides of the rule. They are identical 
in markings and length, the D scale appearing on the body, and the 
C scale appearing on the movable slide. The scale length is 25 cm. or 
9.84 in. This is slightly less than 10 in. although the instrument is com- 
monly called a 10 inch slide rule. The scale equation is x = 9.84 logloN, 
whcre x is the distance in inches from the left end to any number N 
appearing on the scale. The C and D scales arc used for multiplication 
and division and in conjunction with all of the other scales on the rule. 

The CI scale, on the slide, is exactly the same as the C and D scales, 
except that it is graduated and numbered from right to left. Its use for 
rapid, efficient multiplication and division is explained in a later chapter. 
Xumbers appearing on the CI, inverted scale, are reciprocals of numbers 
directly opposite on the C scale. 

The DF, folded scale, located on the body of the rule, is of the same 
coxistruction and length as the D scale, but begins and ends a t  T. This 
places the 1 mark very near the mid point of the scale. The convenience 
of this arrangement for rapid work and for certain types of calculations 
is esplained later. The C F  scale is identical to the D F  scale but is located 
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on the slide. The CIF scale is identical to  the CF  scale, except that it 
is numbered and graduated from right to left, and numbers on the 
CIF scale are reciprocals of those directly opposite on CF. 

The L scale is used to obtain common logarithms (to the base 10). 
When the hairline is set to any number on the D scale, the mantissa of 
its common log is read at the hairline on the L scale. Since the D scale is 
logarithmic, the L scale is an ordinary, uniformly divided, or natural 
scale. 

The R1 and Rz scales are used for obtaining squares and square roots 
directly. When the hairline is set on any number on an R scale, its 
square appears at the hairline on the D scale. 

The K scale is used for obtaining cubes and cube roots directly. When 
the hairline is set to a number on the D scale, its cube appears at the 
hairline on the K scale. 

The log log scales LLO, LL1, LL2, and LL3 are called the LL scales 
and are used to  obtain powers and roots of numbers from 1.001 to 22,OOO. 
Fractional and decimal powers are easily handled with these scales. 
Powers of e (the base of natural logarithms) are also obtained directly 
on the LL scales by setting the hairline to the power desired on the 
D scale. For the log log scales the scale equation is x = 9.84(log,dogeSZ - 
logldog,N,) in which x is the distance in inches between numbers SI and 
Nz appearing on any LL scale. 

The scales designated LL/O, LL/1, LL/2, and LL/3 are called the 
reciprocal log log scales and are used in the same manner as are the 
LL scales, but for numbers less than 1. These are also log log scales and 
the same scale equation applies to  them. Their range extends from 
0.00005 to 0.999 and the numbers and graduations extend from right 
to left. When the hairline is set to a number on the D scale, the recip- 
rocal of e raised to the power of this number is read directly on a re- 
ciprocal log log scale. 

The log log scales are in reality one-quarter lengths of a single long 
scale. For example each of the LL scales is 25 cm. ih length, equal to 
one-fourth of a meter. The numbering of the LLO scale begins at 1.001 
and ends a t  1.01; LLl begins a t  1.01 and ends at  1.105; LL2 begins at 
1.105 and ends at e; and LL3 begins at e and ends at  22,000. If these 
four scales could be placed end to end, a single scale one meter in length 
would result. 
An important property of the log log (LL) scales is that they rcprc- 

sent powers designated ex whereas the reciprocal log log scales represent 
reciprocals l / e x ,  which are the same as e-=. Hence any number on an 
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LT, sc:iI(~ has its rcciprocal directly opposite on the corresponding re- 
ciprocal log log sralc. For cxamplc, the rcriprocal of a number on LL1 
is dircctly opposite on LL/l  and the reciprocal of a number on LL2 is 
directly opposite on LJ1/2. It will be noted that reciprocals of numbers 
close to I may be obtained with extreme accuracy. Many of the other 
advantngvs and uses of the log log scales will be explained in a later 
cliaptcr. 

Thc Cos S scale is used to obtain sine and cosine functions of angles 
and is graduated in degrees and decimals of degrees. With the hairline 
set a t  the angle on the S scale the sine of the angle is read on the C scale. 
For siiieh the scale is gixluated from left to right from 5.74 degrees to 
90 tlcgrccs. To obtain the cosine of an angle the hairline is set a t  the 
angle on the Cos sc.:ile :ind it,s cosine function is read on the C scale. 
For cosiiics the scale is graduated from right to left from zero to 84.3 
dcgr-ees. 

The T scale is used to obtain the tangent of angles from 5.71 degrees 
to 84.3 degrees. For angles in the range of 5.71 degrees to 45 degrees 
this sc;& is graduated from left to right. When the hairline is set to an 
angle in  this range, its tangent function is read on the C scale. For 
angles from 45 degrees to 84.3 dcgrees the hairline is set a t  the angle 
and its tangent is read a t  the hairline on the CI scale. In this range the 
scalc is gr:iduat,ed from right to left. 

A n  :idditiond scale m:ul<cd Sec T ST is provided for determining the 
tarigcnt furiction of small angles varying from 0.57 to 5.73 degrees. This 
scale is graduated from left to right in this range and is used with the 
C scnlc. I t  may also be used for determining the sine function of small 
angles siiice if the angle is small sine and tangent functions are nearly 
equal. For large angles the scale is numbered and graduated from right 
to left for use with the C I  scale. In the range of 84.27 to 89.43 degrees, 
with the hairline set to the angle on this scale, either tangents or secants 
are read at  the hairline on the CI scale. In this range the tangent and 
the secant are nearly equal. 

More detailed explanations for the trigonometric scales are given in 
Chapter 6 on "Trigonometric Operations." 

Reading the Scales. Thc construction and reading of the D scale 
only will be explained here, since with this information the student will 
be able to read any of the other scales. In Fig. 2 a logarithmic curve is 
shown. The abscissa of any point on the curve is a number N while the 
ordinate of the same point is the common logarithm of N. On the D scale 

the figures 1 to 10 represent the numbers 
N. whereas the distance from the end I 1 

ID 

1 I I 1 1 I 
of the scale to any number N is pro- 
portional to IogIoN. Since the curve is 
not a straight line the scale is not uni- 
formly divided. For example, the dis- 
tance from 1 to 2 on the rule is 9.84 
logl&? = 2.96 in. whereas the distance 
from 2 to 3 is 9.84 (logl$ - logl$) = 
1.74 in. 0 

Since the distance between 1 and 2 on 
the D scale is relatively long, i t  was pos- 
sible t o  divide this distance into 10 major 
lengths, to subdivide each of these major lengths into 2 secondary 
lengths, and in turn to  subdivide each of these into 5 tertiary lengths. 
All of the distances between division marks are proportional to the 
differences of logarithms of the numbers represented. The shortest 
distance between tertiary divisions is still great enough so that the eye 
is not confused in reading the scale. In fact it is possible to set the fine 
hairline by eye at a point between the smallest division marks, estimat- 
ing its location to the nearest tenth of the length for very accurate 
settings. Hence settings of 4 digit accuracy may be made for numbers 
whose first digit is 1. In  Fig. 3 four different hairline readings are 
given, each to 4 significant digits. The readings which the operator 
would take from the slide rule are shown directly above each long 
vertical line. 

NUuBERS N 

pig. 

1060 1200 1308 1447 

Fig. 3-D Scale Readings. 

Between numbers 2 and 3 and also between numbers 3 and 4 on 
the D scale, the distance is divided into 10 major lengths, each of which 
is subdivided into 5 secondary lengths. Again the hairline may be set 
by eye between the smallest division marks. Settings of 3 to 4 digit 
accuracy may therefore be made on this part of the scale. 

For the remainder of the scale, for example, between n u m k r s  4 and 
5, 10 major divisions are provided, each space being subdivided into 
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2 scronc1:iry Icngths. 'I'hc hairline may be set by eye between the smallest 
tlivi~iott m i t k  with precision, to give 3 digit accuracy for numbers 
\vtio,r lint digit is 4, 5, G ,  7, 8, or 9. In Fig. 4 five different hairline 
rc:i(iiiixs :trv given. 

618 673 797 040 952 

I I  

Fig. 4-D Scale Readings. 

Accuracy. 'L'lic Icft c i i t l  of the D scale, for number5 Iiaving 1 as 
1 1 1 ~  first digit, is ;ic:c-uratn: to 4 significant figures whereas the riglit 
c m t l  of tlict scale is :iccnr:ite only to 3 significant figures. Since both ends 
xrv i i m l ,  t,li(i accur:icy as a whole is limited to 3 significant figures. Such 
ac(xir:wy is a l l  th:it is required for ordinary design calculations. 

Effects of Errors in Reading the Scale. In case the hairline is set 
i n m r i w t  1y or the rc:itling is made incorrectly, the effect may be evalu- 
: i i ( v I  1)s iisc of the sc:ile equation previously stated as x = 9.84 log,,N, 
it1 \vIiic*lt s is the clistmcc in itdies from the left end of the scale to any 
nuinl)c\r N :Lppcaring on the scale. Taking the derivative of both sides 
\\.it11 rcslwc't LO N, the following equation results: dN - - - 2.3026(*) 

N 9.84 . 
'I'lic t.crin --'~- is thc r(:I:it,ivc error in  the number N, while __ is the 

rc1:Ltiw vrror in rending or setting the hairline. Therefore the relative 
(war in t,lie nunitwr is intleperirlent of the size of the number or its 
location on tlic scale and is 2.3026 times the relative error in reading 
Ihc scdc. 

tlV dx 
N 9.84 

Chapter 3 

MULTIPLICATION AND DIVISION 

Multiplication and division are performed on the slide rule 1)y the 
simple process of adding or subtracting logarithms. The I o g u i t  hm of 
the product of two numbers is equal to the sum of the logaritlima of 
the numbers; the logarithm of the quotient of two numbers is equal to 
the difference of their logarithms. Since the scales used are logarithmic 
scales, products and quotients are obtained automat icnlly aimply by 
setting the numbers directly opposite, one on a scale of the body, the 
other on a scale of the slide. 

Multiplication Using Lower Scale Combinations. In Fig. 5 the 
D and the C I  scales are used to niultiply 2 by 4. The D scale i-; on the 
lower part of the body and the CI scale is on the lon-er part of the slide. 
Hence the D and CI scale combination is called a lower scale cod) ina-  
tion. (To avoid confusion only the scales being used are h h o u  n in Fig. 5 
and in the figurcs which follow.) The addition of lo:: 2 u t ~ l  log 4 to 

= R ~ q h t  Hair I i n e ' 04  4 
Slide 7 

C t l O 9 8  7 6 5 4 2 
I 

I 1  I I I l i I I  
2 3 4 5 6 7 8 9 1 0  

I I 

I 1 l o q 2  J 

i- I lo9 8 

Fig. &Use of D and CI Scale Combination for Efficient 
Multiplication of 2 by 4. 

obtain log 8 is shown. The distances along the scales are proportional 
to the logarithms of the numbers. This is the reason why adding these 
distances automatically adds the logarithms. 

In this operation the hairline is used by setting i t  to the number 2 on 
the D scale. The slide is then moved until the number 4 on the CI acale 
coincides with the hairline. The answer 8 is read on the D scale opposite 
the 1 mark, which is the right index of the CI scale. It is unnecemary 

9 



10 RIUJ~TIPLICATION AND DIVISION 

to move the hairline again, since the answer is read by a glance of the 
cya to the right index of the slide. 

'I'hc mriltiplication of 2 by 4 might have been performed less emiently 
by using the C and D scales as shown in Fig. G .  By this method the hair- 
line is set on 2 of the D scale; the slide is moved until the 1 mark or left 
iii(Icx of tlw C sc& coincides with the hairline; then the hairline is 

'9 4 
Sllde I 

1 

2 3 4 5 6 7 8 9 0  
I I I I I I l l  C \.4: L e f t  I n d e x  

I I I I l l 1  
2 3 4 5 6 7 8 9 1 0  

Fig. G-D and C Scale Combination Used Inefficiently to  Multiply 2 by 4. 

moved t o  4 on the C scale in order to read the result 8 at the hairline 
on tlw I>  hc:iIe. This method of multiplication requires two movements 
of 1 1 ~  Iiairline instead of one and ordinarily requires a much greater 
movcmcnt of the slide. It is not recommended for use in multiplication 
sincc i (  is wasteful of time and energy. 

Rlriltiplirntion should always start by setting the hairline to a number 
on a 1) sc:ilc. The slide should then be moved until the other number 
on a C1 scdc coincides with the hairline. The product is then read on 
a D sc*aIc by glancing at the index of the slide. (A D scale may be either 
D or  I)F, :I CI sc:ile cithcr CI  or CIF.) 
'I'h multiplication of 2 by 4 in Fig. 5 required a slide movement to 

the l(J1 so tliat the answer was read at the right index of the slide. The 

Ioq IO , lo9 IO - lo4 8 I 
I I  f SI $de 1 

' y 1 I I I  I I I I I 
3 2 I Left index.. CI Y) 9 8 7 6 5 4 

I I I I I l l 1 1  
0 1  2 3 4 5 6 7 6 9 1 0  / I 

I '6 I I 
/--Hairline 

Fig. 7-D and CI Scale Combination for Multiplying 2 by 8. 
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multiplication of two numbers such as 2 and 8 requires a movement of 
the slide to the right  so that the answer is read a t  the left index of the 
slide, as in Fig. 7. The hairline is set on 2 of the D scale and the number 8 
on the CI scale is moved to the hairline. Here it is noted that the scale 

lcngth log 2 - (log 10 - log 8) = log __ = log 15, \vh~rea> tve know 

that the product of 2 and 8 is 16. Hence the result 1.6 is corrcrt escept 
for the decimal point. We do not use the slide rule to  clctcrmine a 
decimal point anyhow because a rough calculation easily locates the 
decimal point. Therefore the product 16 is read on the D ~ c a l c  a t  the 
left index of the slide. 

A point t o  emphasize is that either the left or the right indcs, I\ hich- 
ever is in contact with the D scale, is used to read the r e d t  on the 
D scale. 

Division using Lower Scale Combinations. In  dividing tn-o num- 
bers a D and C scale combination should be used for the most efficient 
operation. Dividing involves subtracting logarithms. The example of 
Fig. 8 indicates the division of 9 by 6. I n  this case log 9 - log G = 10g 1.5. 
The slide has been moved to the right. Therefore the quotient 1.5 is 
read on the D scale at the left index of the C scale. 

2(8) 
10 

Hal r I i ne loq 6 

I I 
I 2 3 4 5 6 7 8 9 0  

I I I 

3 
I 

loa 9 I 

I l ' ! I l  C I  
I I I I I I I  
4 5 6 7 8 9 0  I 

Fig. 8-D and C Scale Combination for Dividing 9 by 6. 

Another example is shown in Fig, 9 in which 1.8 is tliviclt.tl liy 2.5. 
The hairline is set to 1.8 on the D scale. Then 2.5 on the C >tale is 
moved to  the hairline. The result 0.72 is read on the D scale a t  the 
right index of C since the slide was moved to the left. From the figure 
the scale distances are as follows: log 1.8 + log 10 - log 2.3 = log 
1'8(10) = log 7.2. The figure 7.2 is correct except for the location of  the 

2.5 
decimal point. This is located by mental calculation since dividing 1.8 
by 2.5 obviously results in a number less than 1. 



loq to 
c 

-- log 2 5  I lo9 IO - lo9 2 5 id Riqht 
Index 

- _  - ~~ 

I 

I I 
2 I 2 5 3  c ;  

I 
D i  2 3 4 

I I 84 I 17 

Fig. 9-D and C Scale Combination for Dividing 1.8 by 2.6. 

Use of t h e  Upper Group of Scales. There is an upper group of 
sc:il(.s tlcsignated DF, CF, and CIF. The DF scale is on the upper part 
of thc h l y ;  the CF and CIF scales are on the upper part of the slide. 
Thew sc:iles may also be used for multiplying and dividing since they 
ai'(. iclcsntkil in construction to the D, C and CI scales, except that the 
inti(.\; of each is very ncar the middlc of each scale. The letter F indicates 
th:it t Iiesr :we folded scales, beginning and ending at points other than 1. 
The symhol K appears at the left end of the D F  scale. This symbol 
should Iw directly opposite the number 1 of the D scale. (Check this by 
setting thc liairline over x on the DF scale.) It is easy to multiply by T. 

Simply wt the hairline on a number on the D scale and read ?r times 
thc. nitiiilwr on DF. For example, setting the hairline on 2 of the D scale, 
~ ( 1  r t ~ i t l  6.28 on DF. Sincc the DF scale begins with log x, by moving 
t h t .  1i:iirlinc a scale distance of log 2, we are adding log x to log 2. Since 
log T + log 2 = log 2 ~ ,  the product 28 = 6.28 is read on D F  at the 
1i:iiidi tic. 

'I'he s:me relationship exists on the slide with the C and CF scale 
coin\,iti:rtion. \Vith the hairline set on any number on C, we read ?r times 
the riutnlm on CF. 

Fig. 10 4 i o w  the use of the upper scales in multiplying. Here 1.1 is 
mi111 iplietl 1)y 1.2 by setting the hairline to 1.1 on D F  and moving 1.2 
on C'Ilp to the hairline. The product 1.32 is read on DF at the 1 mark 
or in&\; of the CIl? scale. 

Let it 1 ) ~  :Lssumed that the slide was centered, with all indices in line, 
before Iwginning the calculation. From Fig. 10 the total movement of 
the slide from its centered position was proportional to log 1.1 + 
log 1.2 = 106 1.32. The left index of the C scale has moved exactly the 
same distance, so that the answer might also be read on the D scale, 
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at the left index of C. Hence either the DF or the D scale may be read. 
The lower C and CI scales have two indices, one at each end, while 

the upper CF and CIF scales each have only one index, near the center. 
Note that wherever the slide is moved, the lower index reading on D 
is the same as the upper index reading on DF. 

2 311 
I l l  I I /  

2 8 7 6  5 4 3 
4 5 6 7 8 9 0  
I 1 1 ,  1 , l  

F?f 4 5 6 7 8 9 1 ~  ' I 1 . 1 1  

I D /  I 

I I 109 I 2  I I I I  I I 

c ;  2 3 
' 

I I I 
2 3 4 5 6 7 8 9 1 0  

I I I l l /  

A 

1 
Fig. 10-DE' and CIF Scale Combination for Multiplying 1.1 by 1.2. 

For multiplying 1.1 by 1.2 there is a definite advantage in using the 
upper scales. The total movement of the slide from its centered position 
in Fig. 10 was 1.18 in. Had the D and CX scale combination been used, 
a slide movement of 8.66 in. would have been required. The advantage 
of the upper group of scales for certain operations is therefore 
obvious. 

Division may be performed on the upper group of scales as follows: 
to divide 8 by 2 efficiently, set hairline to 8 on DF and move 2 on CF 
to hairline; read 4 on D F  at index of CF, or read 4 on D at  right index 
of C. This requires a slide movement of about 3.9 in. If the same opera- 
tion were performed by using the C and D scale Combination, a slide 
movement of about 5.9 in. would be required. 

Choice of Lower or Upper Scale Combinations. For somcb opera- 
tions the choice of scale combinatioxis makes no difference in etiiciency, 
either the upper or lower group may be chosen. For other operations a 
lower scale combination is more advantageous, while for still other 
operations an upper scale combination is best. To  determine which 
combination is best to  use, a general rule is desirable. Such a rule may 
be stated definitely as follows: Either lower or upper scale combinations 
may be used for multiplication and division, but whenever one scale com- 
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bimilioti rcguires moving the slide more than one-half i ts  length, use the 
oilier. I3y following this rule the maximum slide movement required is 
one-h:ilf of 9.81 in. or about 5 in. 

The student should perform the following exercises in multiplication 
and division in order to familiarize himself with the six scales and their 
most cficierit uses. A mental calculation or a few rough figures set down 
on paper will serve to locate decimal points. No attempt should be 
m:rde to read results more accurately than the instrument allows. In  
this connccLion it will be remembered that accuracy is limited to four 
significant figures for numbers whose first digit is 1 but to only three 
significant figures for numbers beginning with the digits 2 to 9. The D 
and CI or the D F  and CIF scale combinations should always be used 
when multiplying, whereas the D and C or the D F  and CF  scale com- 
binations should always be used when dividing. 

EXERCISES IN MULTIPLICATION 

Perform the operation and indicate the most advantageous scale 
coml)in:rt ion. (Answers are given at the end of the manual for checking.) 

1. 2.4 X 3.02 7. 2.13 X 12.11 13. 4.15 X 26.2 
2. 1.52 X 2.95 8. 1.49 X 1.32 14. 29.2 X 7.68 
3. 6.12 X 3.4 9. 9.12 X 8.25 15. 20.8 X 95.7 
4. 1.57 X 2.2 10. 7.1 X 9.6 16. 42.5 X 14.24 
5. 3.24 X 7.22 11. 5.13 X 9.08 17. 2.25 X 3720 
6. 9.18 X 3.32 12. 3.3 x 9.8 18. 392 X 10.33 

EXERCISES IN DIVISION 

Pcrform the operation and indicate the most advantageous scale 
combination. 

19. 9.3 t 3.08 25. 9.3 i 2.18 31. 9.3 i 6.5 
20. 8.5.5 +- 2.96 26. 8.55 f 10.5 32. 8.55 f 5.12 
21. 7.45 t 2.63 27. 7.48 i 115 33. 7.48 f 3.54 
22. 6.3 + 0.27 28. 6.3 i 14.2 34. 6.3 i 7.5 
23. 450 f 19.2 29. 450 i 10.4 35. 450 i 57.2 
24. 1950 + 435 30. 1950 i 94.5 36. 1950 i 10.6 

Multiplying or Dividing a Series of Numbers. A great advantage 
in slide rule calculation is that any number of factors may be multiplied 
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together in one continuous operation to obtain their product. In terms 
of logarithms, the addition of the logarithms of a series of numbers is 
equal to the logarithm of the product of the numbers. If more than two 
factors are to  be multiplied together, the logarithms of the first two are 
added automatically on the slide rule scales and to  this sum the loga- 
rithm of the next factor is added by the next setting, to this sum is 
added the logarithm of the next factor, and so on, for any number of 
factors. Therefore i t  is not necessary, as in long hand multiplication, to 
multiply the factors two by two and then to  multiply these separate 
products. A simple example will serve to illustrate the procedure : 

1.41 X 7.25 X 2.02 X 8.1 = 167.3 

In order to obtain the product 167.3 by slide rule we set the hairline 
on 1.41 on the D scale, move 7.25 on CI to  the hairline, move the hair- 
line to 2.02 on C, and move 8.1 on CI to the hairline. The product 167.3 
is read on the D scale at the left index of C. Only the final result needs 
to be set down on paper. About thirty seconds are required to do the 
entire operation. By either long hand or electric calculator multiplica- 
tion we would first multiply 1.41 by 7.25 to  obtain 10.2225; then we 
would multiply 2.02 by 8.1 to obtain 16.362; then 10.2225 would be 
multiplied by 16.362 to  obtain 167.2605450. The numbers 10.2225 and 
16.362 would need to  be set down on paper or transferred to another 
dial, even if a calculator were used. Of course the final result 167.2605450 
is accurate to ten significant figures. However, in ordinary design cal- 
culations such accuracy is unnecessary and time is therefore wasted in 
doing unnecessary work. Our slide rule result 167.3 is accurate to four 
significant figures, a degree of accuracy usually sufficient. 

On the slide rule, division is just as easy as multiplication. I n  fact, 
to divide by a number we need only multiply by its reciprocal. Due to 
the presence of the reciprocal or “I” scales as well as the others we may 
choose the most convenient scale to perform either multiplication or 
division when a series of factors is-involved. It will be well to keep in 
mind that in multiplying one must add logarithms and that in dividing 
one must subtract logarithms. By noting, always, the direction of the 
numbering and graduations of the scales one plans to use, errors will be 
avoided. A number of examples follow, illustrating the use of the scales 
in combined multiplication and division. The student should Fvork 
through these examples and check the results. 
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3.25 X 4.28 X 0.13 = 127 

Operations 

Set 1i:iirIinc to 3.25 on D. 
Xlovc 4.2s on CI t,o hairline. 
RTovcb 11:~irlinc. to 9.13 on CF. 
I<c:itl 1‘27 on J>F at hairline. 

4.7 X 5.24 X 10.12 = 249 

Operations 

Set hairline to 4.7 on D. 
Move 5.24 on CI to hairline. 
Move hairline to 10.12 on C. 
Rend 249 on D a t  hairline. 

6.4.5 x 7.51 
8.26 

l _ _ . _ _  - - 5.86 

Operations 

Set hairline to 6.45 on IIF. 
3lo\c 7.51 on CCF to hairline. 
;2lov(. hairline to 8.26 on CIF. 
Ilc.ntl 5.86 on DF a t  hairline. 
I’crforniing Lhc opcrntions in this 

way first :dds the log (i.45 to the 
log 7.51, then subtrwts log 8.26, 
thc .  rehu l l  Iwing log 5.86. 

It is also possible to do the work 

Set hairline to 6.45 on D. 
Move 8.26 on C to hairline. 
Move liairline to 7.51 on C. 
Read 5.86 on D at hairline. 

(This method first subtracts log 
8.26 from log 6.45, then adds log 
7.51.) 

as follows: 

I t  is l~c~licvetl tliat fewer errors result by first using all factors in the 
nurncwtor, thvn nest using all factors in the denominator. In this way 
onc first ronccntrates on continuous multiplication, then on continuous 
division, without altcrnclting from one process to the other. Therefore 
the first mcthud given for solving the last example is preferred. 

120 x s.25 x l!).l x 0.(i 
4 0 s  2 :F24x:a3-x-25 = 1.098 

Operations 

Set 1i:iiidiw to 120 on n. 
blow S . 5  o n  < ’ I  to 1i:iirline. 
htovc 1r:ii 1.1 irie to 19.1 on C. 
Move 9.6 on CI to hairline. 
Afove 2i:tirlinc t,o 40.5 on CI. 
Riovc 3.21 on C to hairline. 
Move hairline to 50.4 on CI. 
Rlove 25 on C to hairline. 
Read 1.098 on I1 at  left index of C. 

30.6 X 41.2 X 5.41 
(40.8)2 X 7.3 = 0.561 

Operations 

Set hairline to 30.6 on D. 
Move 41.2 on CI to hairline. 
Move hairline to 5.41 on C. 
Move 40.8 on C to hairline. 
Move hairline to 40.8 on CI. 
Move 7.3 on C to hairline. 
Read 0.561 on D a t  right index 
of c. 
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Operations 

Set hairline to 60.5 on DF. 
Move 60.5 on CIF to hairline. 
Move hairline to 60.5 on C. 
Move 48 on C to hairline. 
Move hairline to 3 on CI. 
Move 655 on C to hairline. 
Read 0.0235 on D at hairline. 

The decimal point may be located by a rough ea :ulation by ,-etting 
down the numbers rounded off, and using a cancellation prow>s, thus 

r) 

72 7.2 1 0 0 ~ ~ 0 x 6 0 ~ 6 0  
50X3XlBB00X70d = 3500 = 350 

We observe that 7.2 is divided by a number greater than 100 but 
leas than 1000. Therefore the result is a number less than O.Oi2 hut  
greater than 0.0072. The slide rule gives us the three significant figures 
235, so that  the result must be 0.0235. 

EXERCISES IN MULTIPLICATION AND 
DIVISION OF A SERIES OF FACTORS 

37. 12.1 X 2.36 X 4.25 
7.85 X 204 X 82.6 

6.55 X 101.5 X 71.9 42. 
38. 5.72 X 6.25 X 7.13 
39. 7.48 X 802 X 920 

18.6 
4.1 X 3.64 X 2.04 43. 

2.2 40. - 7.25 
1 

1.04 X 1.71 X 9.25 44. 

1080 
(29.4)2 X 7.6 45. - 8.24 X 9.13 

41’ 10.12 X 14.7 
(21.2)2 X 8.95 

17.6 X 61.7 X 4.6 46* 

Multiplication or Division of a Single Factor by a Series of 
Numbers. In engineering calculations i t  is frequently necessary to 
obtain the products of several different numbers each multiplied by the 
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same singlc factor. In this type of problem the best procedure is to set 
thc. inc1c.u of t l t c  C sc:tlc to thc singlc factor on the D scale and to use the 
1 )  :mcl (” or  ihr I)F : m i  CIi’ scale coml)ination for multiplying. By this 
mcl hod only the hiidinc nccds to be moved to perform the successive 
multiplications. Slippose, for example, 1.27 is to be multiplied in turn 
by 3.16, 4.28, (i.55, 8.4, and 9.85: 

Sct thc left index of C to 1.27 on D. 
hlovv 1i:iirIino l,o 3.10 on C, reading 4.01 on D. 
Movc hairlint: to 4.28 on C, reading 5.44 on D. 
Movc hairline to 0.55 on C, reading 8.32 on D. 
Move hairline to 8.4 on CF, reading 10.67 on DF. 
Movc hairline to 9.85 on CF, reading 12.51 on DF. 

I l i t i ~ i o n ~  of :I single factor by a series of numbers is illustrated by 
the following esnmple. Suppose 41.5 is to be divided in turn by 12.4, 
20.8, 44.5, and 92. For this work it is best to use the reciprocal scales 
CI and CIF for division: 

Set right index of CI to 41.5 on D. 
Move hairline to 12.4 on CI, reading 3.35 on D. 
Move hairline to 20.8 on CI, reading 1.995 on D. 
Move hairline to  41.5 on CIF, reading 0.933 on DF. 
Move hairline to 92 on CIF, reading 0.451 on DF. 

In setting an index of thr slide in the above operation, either the 
left or the right indcs of the slide might have been used. It should 
be rcmemlwcd, howcwer, that the slide need not be moved more than 
one-h:ilf of the scale length. The number 3.16 of the D scale is located 
approuirn:ttdy at its mid point. Therefore for a singEe factor less than 
$16, sct Ihc k f t  tndc.r; f o r  onc greatcr than SIG,  set the right index of the 
slid(.. If this rule is followed the singlc factor may he either multiplied 
or tlioidcd by uuy nuiii1)c.r without again moving the slide. It is only 
necessary to move the hairline to perform the successive operations. 

EXERCISES 
47. Multiply 320 successively by 1.15, 2.42, 3.18, 4.5, 5.42, 6.88, 7.96, 

48. Diviclo 7.18 successively by 1.02, 2.15, 3.29, 4.18, 5.67, 6.41, 7.85, 
8.05, and 9.6. 

8.76, and 9.34. 
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Proportion. The principle of proportion is convenient in solving 
simple equations without having to solve the equations explicitly for 
the unknown. The use of proportion in this manner is perhaps best 
illustrated by the use of simple algebraic expressions. Let x be the un- 
known quantity which is to be solved for when the known quantities 

are C’, D’, C, or D. In a proportion such as 7 = -7 C’, D, and C are 

known and x is to be determined. If we set the number D on a 1) scale 
( D  or DF) opposite C on a C scale (C or CF), x may be read directly 
on the D scale opposite C’ on the C scale. For example, to solve for s in 
x 24.4 
25 41.5 
x = 14.7 on D. 

x D  
c c  

_ -  - -) set 24.4 on D opposite 41.5 on C; opposite 25 on C, read 

D‘ D 
x c  

In  an expression such as - = -2 set D on a D scale opposite C on a 

C scale and read x on the C scale opposite D’ on the D scale. As an 

example, to solve for x in - = 4, set 14 on D F  opposite ’71 on CF. 

Now opposite 39.8 on D, read x = 202 on C. 

39.8 
x 71 

EXERCISES 

By use of the principle of proportion, solve the following esamples: 
x 9000 

49. - = - 6.45 16700 
x 21.4 50. - = - 

12.1 195 

18.25 71 
x 705 

- -  52. - - 

356 425  53. - = - 
51 x 

7.18 32.4 
x 17.9 51. - - 

Solution of the Quadratic Equation by Factoring. If any quad- 
ratic equation is transformed into the form x2 + Ax + B = 0, the roots 
or values of the unknown x may be determined by a simple method, 
using the slide rule scales. We let the correct roots be -xl and -xz. By 
factoring, (x + xl)(x + xz) = 0. The terms -xl and -x2 will be the 
correct values of x providing the sum x1 + x2 = A and the product 
xl.xz = B. An index of the C I  scale may be set opposite the number B 
on the D scale, With the slide in this position, no matter where the 
hairline is set, the product of simultaneous CI and D scale readings 
or of simultaneous CIF and DF scale readings is equal to B. Therefore 



it is only ricwsnry to move the hairline to a position such that the 
sitin of tlic. simu1t:tncoiis CI and D scale readings, or the sum of the 
stmiilt:incorts CIF and DF scale readings, is equal to the number A. 

As an (mmple, the equation x2 + lox + 15 = 0 will be used. We 
set tlic left indcs of CI opposite the number 15 on the D scale. We then 
move the hairline until the sum of CI and D scale readings, a t  the hair- 
line, is cqual to 10. This occurs when the hairline is set a t  1.84 on D, the 
simrrlt:mcous reading on CI being 8.15. The sum x1 + x2 = 1.84 + 
S.15 = !).XI, sufficiently close to 10 for slide rule accuracy. Roots or 
values of x are therefore - X I  = -1.84 and -x2 = -8.15. Obviously 
thc values of x solving the equation x2 - 10x + 15 = 0 will be +1.84 
arid +8.15 sirice in this case A is negative, equal t o  -10. 

As a second example the equation x2 - 1 2 . 2 ~  - 17.2 = 0 will be 
usctl. The I v f t  index of CI is set on 17.2 on the D scale. Since this number 
is actwlly negative, -17.2, and since i t  is the product of x1 and x2, 
obviously one root must be positive, the other negative. Also the sum 
of s, arid s2 must equal -12.2. We therefore move the hairline until 
the siim o f  sitiiiiltancous scale readings is equal to - 12.2. This occurs 
when tlic 1i:iirlice is set on 13.5 on the DF scale, the simultaneous read- 
ing LLL the 1i:iirlinc on CIF being 1.275. x1 is therefore - 13.5 and x2 is 
1.273, s i i w  sI + sz = -13.5 + 1.275 = -12.225, sufficiently close to 
- 12.2 l o r  xl i& rule :~ccurtlry. Thc values of x solving the equation are 
tliercl'otcb -SI = 13.5 : ~ i t l  - S Z  = - 1.275. 

EXERCISES 

Solve thc following qu:idratic equations for values of x: 
5-t. X'I - :34.53s + 2s = 0. 
55. s - L>l.l4s + 32 = 0. 
5(i. ss - 20.2.y - 120 = 0. 
57. 2s' + 82.8s + 840 = 0. 
58. 1.2s' - 13.38~ + 36 = 0. 

Chapter 4 
S Q U A R E  R O O T  A N D  S Q U A R E S ,  

C U B E  R O O T  A N D  C U B E S  

Square Boot and Squares. The Post Versalog Slide Rule is equipped 
with two root scales, R1 and Ib. These scales are used with the D scale 
to obtain square roots directly with considerable accuracy. If the hair- 
line is set to any number on the D scale, the square root of the number 
is read a t  the hairline on R1 or R2. For convenience the R, and R2 scales 
are located on the body of the rule directly below the D scale. The R1 
and R2 scales are component parts of a single long scale 50 cm. in length. 
R1, 25 cm. long, is graduated and numbered from left to right from 1 
to m, while R2, also 25 cm. long, is graduated and numbered from 
left to right from fl0 to 10. 

The root scales are also used to obtain squares of numbers, For num- 
bers between 1 and fl (equal to 3.162), if the hairline is set at  the 
number on R1, its square is read at the hairline on D. For numbers be- 
tween 3.162 and 10, if the hairline is set a t  the number on R2, its square 
is read a t  the hairline on D. 

The simple mathematical relationship of the R and D scales may be 
expressed as follows: R 2  = D. Taking logarithms of both sides of the 
equation, 2 log R = log D. Therefore the scale distance, from the indes 
to any number on the R scale is twice the scale distance to the same 
number on the D scale. This means that readings of the R scales are 
lwice as accurate as readings of the D scale. 

Examples in the use of the square root scales follow: 

d = 3  &i3 = 9.49 

Operations Operations 

Set hairline to 9 on D. 
Read 3 on Rl at hairline. 

Set hairline to 00 o r 1  I) .  
Read 9.49 on R2 a t  hairline. 

~ _ _ _ _ _ _  

= 15.81 +m = 64.2 

Operations Operations 

Sct hairline to 250 on D. 
Read 15.81 on R1 at hairline. 

Set hairline to 4120 on D. 
Read 64.2 on R2 a t  hairline. 
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d m  = 230.8 4- = 778 

Operations Operations 
Set hairline to 57,500 on D. 
Rcad 239.8 on Rl a t  hairline. 

Set hairline to 605,000 on D. 
Read 778 on Rz a t  hairline. 

mm = 239.8 

Operations 
Set hairline to 2,720,000 on D. 
Read 1649 on R, st hairline. 

It will I x  observed that whenever the number has an odd number of 
digits its square root appears on R, and whenever the number has an 
euen number of digits its square root appears on Rz. 

As in all the previous examples, the square root of a number larger 
than 1 is smaller than the number. However, the square root of a num- 
her smallcr than 1 will be greater than the number. This type of problem 
is illustrated by the following examples: 

I 

= 0.2236 a = 0.707 
I 

I Operations Operations 
Set hairline to 0.05 on D. 
Read 0.2236 on It ,  at hairline. 

Set hairline to 0.5 on D. 
Read 0.707 on Rz at hairline. 

iU 

d m  = 0.02236 .\/m% = 0.0707 

d Operations I Operations 
Set. Iiairline to 0.0005 on D. 
1te:Ltl 0.02236 on R, a t  hairline. 

Set hairline to 0.005 on D. 
Read 0.0707 on R2 at hairline. 

1: I 

ym0m = 0.00707 

F Operations Operations 
1 
! 
1 

Set liairlirie to 0.000005 on D. 
Read 0.002233G on It, a t  hairline. 

Set hairline to O.ooOo5 on D. 
Read 0.00707 on R2 a t  hairline. 

1 
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From the above examples it is apparent that  when the number of 
zeros to the right of the decimal point is odd, the square root is read on 
the R1 scale. When the number of zeros to the right of the decimal point 
is even, the square root of the number is read on the Itz scale. Also when 
there are no zeros to the right of the decimal point the square root is 
read on Rt. 

In squaring a number we set the number on the R, or R2 scale and 
read its square on the D scale. The number of digits in the result is 
easily determined. The square of a number set on R1 will hare an odd 
number of digits, while the square of a number set on RP will have an 
even number of digits. For example, in squaring 350 we set the hairline 
to 350 on Rt, hence the square will have an even number of digits. On 
D we read the figures 1225. Since the number 350 has three digits, its 
square will have six digits, an even number. The square is therefore 
122,500. Other examples follow: 

(250)2 = 62,500 

Operations 

Set hairline at 250 on R1. 
(Result will have an odd number of digits, one less than twice the 

Read 62,500 on D at hairline. 
number being squared.) 

(4.5)2 = 20.25 

Operations 
Set hairline on 4.5 on R2. 
(Result will have even number of digits.) 
Read 20.25 on D at hairline. 

(1,748)2 = 3,060,000 

Operations 
Set hairline at 1748 on RI. 
(Result will have odd number of digits.) 
Read 3,060,000 on D at hairline. 
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(682)2 = 465,000 

Operations 

Set hairline at 682 on Rz. 
(Result will have even number of digits.) 
Read 465,000 on D at hairline. 

In sqiinring a givcn number less than 1 occurring on R,, the number 
of significant zeros in the result will be twice those in the given number 
plus one zero. For any given number occurring on R2 the square will 
have cxictly twice the number of significant zeros as the given number. 
For ea:unple: 

(0.1G9)' = 0.0286 

Operations 

Set hairline to 0.109 on R1. 
(Rcwlt will h a w  odd number of zeros to the right of the decimal 

I<c.atl 0.0Wi on 1) at  hairline. 
point.) 

~ 

(0.043)? = 0.00185 

Operations 

Set 11:iirline to 0.0-13 on Rz. 
(Itcwilt will Ii~lvv cv(m iirimber of zeros to the right of the decimal 

I < c ~ i ( l  0.00185 on 1) at, hairline. 
point.) 

- - 

Areas of Circles. One decided advantage of the root scales is that 
areas of circles may be obtained simply by setting the hairline to the 
radius of the circle on R, or Rz. The area may then be read on the DF 
scale at  the hairline. No slide movement is required. Since the area of a 
circle is ~ I t 2  the vnlue of It2 on the D scale is multiplied by x when the 
3 F  sc:ile is read. For esample, the area of a circle whose radius is 0.375 
is ol)t:iincd by setting the hairline a t  0.375 on Rz and reading 0.442 at  
t lw 1i:iirliile on IIF. 
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EXERCISES 

Perform the indicated operations using R1, Rz, and D scales: 

59. dG 63. d m  
60. fl 64. 4- 
61. 65. ~ 1 , 9 7 0 , 0 0 0  

62. Vq265 66. 

G7. (20.4)2 
68. (715)2 
69. (1,070)2 
70. (125.4)2 

75. d m  
76. d m  

71. (0.85)z 
72. (0.09-L)2 
73. (0.0076)2 
74. (0.000157)* 

77. vm.00725 
78. 4- 

79. Calculate the areas of circles whose radii are 0.125, O.ISi'5, 0.25, 

Cube Root and Cubes. The K scale is the cube scale of the slide 
rule. With the hairline set on a number on the D scale, its cube may 
be read at the hairline on the I( scale. If the cube root of a nuniber is 
desired, the hairline is set at the number on K and the cube root is 
read at the hairline on D. These two scales are of equal length. llathe- 

matically, since D3 = K and log D = - log K T  the K scale is divided into 

three equal segments, each segment graduated and numbered from left 
to right. The first segment extends from 1 to 10, the second from 10 to 
100, and the third from 100 to 1,000. Since the scale distance from the 
index t o  a number on K is only one-third the scale distance to the same 
number on D, the accuracy of K scale readings is only one-third that 
of the D scale readings. 

The most efficient use of the K and D scale combination is achieved 
by observing the location of the decimal point. Since the three segments 
of the IC scale are graduated and numbered between ranges 1 to 10, 10 
to 100 and 100 to 1,000, the operator should have no difficulty in plac- 
ing the decimal point for numbers between 1 and 1,000. However, for 
numbers less than 1 or greater than 1,000 the decimal point may be 

0.3125, 0.4375, 0.5. 

3 



26 CUIX ROOT AND CUBES 

movcd both hrfore and after the operation to obtain a number within 
the range of the sc.:ilcs. In such cases a definite rule may be followed: If 
the tlccimtll point is nioved n number of places in a number set on D, it 
must be niovctl back 3n places in the cube, which is read on B; or if 
the decimal point is moved n number of places in a number set on K, it 
niiist be nioved back - places in the cube root, which is read on D. For 

c~s:~nipIc, to cube 0.456 we move the decimal point one place to the right. 
By setting tlie hairline at 4.5G on D me obtain 95 at the hairline on K. 
\Vc now move the dccimal point back three places to the left to obtain 
0.0'35. Other csamplcs follow: 

n 
3 

(0.0325)3 = O.oooO343 

Operations 
Move decimal point two places to the right. 

(3.25)3 = 34.3 

Move decimal point back six places to the left. 
Result is then 0.0000343 

(1,214)3 = 1,790,000,000 

Operations 
Move decimal point three places to the left. 

(1.214)3 = 1.79 

Move decimal point back nine places to the right. 
ltesult is 1,790,000,OOO. 

4- = 0.173 

Operations 

Move decimal point three places to the right. 

$5.2 = 1.73 

Move decimal point back one place to the left. 
Result is 0.173. 

CUBE ROOT AND CUBES 

y m  = 29.8 

Operations 

Move decimal point three places to the left. 

= 2.98 

Move decimal point back one place to the right. 
Result is 29.8. 

27 

EXERCISES 

Perform the indicated operations using the K and D scales: 

80. fi 83. 
81. lml 84. V m  
82. W O  85. $560,000 

86. (3.2)3 
87. (41)3 
88. (750)3 

89. $0.32 
90. $0.041 
91. Jo.0075 

92. (0.245)3 
93. (0.036)3 
94. [0.0048)3 



Chapter 5 
O P E R A T I O N S  I N V O L V I N G  POWERS, 

R E C I P R O C A L S ,  E X P O N E N T I A L  E Q U A T I O N S ,  
L O G A R I T H M S .  USES O F  THE LOG LOG 

A N D  T H E  LOG S C A L E S  

r .  1 lie log log svnlcs :ire cxcq~tion:illy useful in cngincering ralculations 
wlricli involvc~ powcrs arid esponcnts. As previously explained, square 
roots :ind squ:~rcs, cul)c roots and cubes, may be found by using the 
spc,ci:il sc*:ilcs I < , ,  Itz, and I<. Howevcr, any power or root of a number 
may bc found by using thc log log scales. For numbcrs close to one, 
powrs  and roots n r ~  tlttorrnined in this way with considerable accuracy. 

One intport:int fcalurc of the log log scales is that the decimal point 
is :il\r:tp givrii by tlic scdc rcading, so that it is unnecessary to de- 
tcwninc. i t >  1oc:ition by additional calculation. This fcatiire reduces the 
chaucc. for  error. IIowcvcr, because of frequent changes in subdividing 
along I I I P  hcalcs and bccausc of the extremely wide range of numbers 
(froni 0.00005 to about 22,000), care must be used in reading the scales. 
The stil)-tlividing should be carefully checked by eye for that portion 
of any log log scale being used. 

Powers of e and Reciprocals. The numbers on the log log scales 
rcprrwirt powcrs of c. Since all of the log log scales are located on the 
body of the rule and arc used with the D scale, the powers are read by 
siniply hcttirtg the hairline. If x represents a number to which the hair- 
line is set on tlic I) srnle, values of ex appear at the hairline on the log log 
scales. I,T,O, LL1, LLZ, and LL3 (called the LL scales) are used for 
posit ivv poirc'rs of e ;  whclreas LL/O, LL/l, LL/2, and LL/3 (called the 
reciproc:il log log sc:ilrs) are used for negative powers of e. To aid the 
opwator in rcnicmlwring this rclationship the symbol x appears at the 
left c8trd of thc 1)  s(de,  Lhc symbol ex at the left end of the EL scales, 
arid c-' a t  the lcft end of the reciprocal log log scales. 

Thc sc:ilos are arrnngcd symmetrically about the horizontal center 
linc of the rule. The arrangement is in the order of LL3, LL2, LLl be- 
low anti I ,Lj3 ,  LLj2, LL/I above, from the center line outward on one 
face of t Iic rule. Turning the rule over, LLO and LL/O appear at the top. 
The log log sc:iles 1i:~ve black and the reciprocal log log scales red 
numtrcring. 
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The relationship of successive scales is that of one-tenth powers of e. 
For example, if we set the hairline to the number 2 on D, we read 
e2 = 7.4 on LL3, eo.2 = 1.2215 on LL2, eo.M = 1.0202 on LL1, and 
e0.Oo2 = 1.002 on LLO. Since e2 = (eO.z)lO, 1.2215 is the one-tenth power 
of 7.4. With the hairline set a t  2 on D we may also read e-2 = 0.135 
on LL/3, = 0.8187 on LL/2, e+.o9 = 0.9802 on LL/ 1, and c-O Oo2 = 

0.9980 on LL/O. Thus eight different powers of e are obtained u-ith OJIC 

setting of the hairline. 
To aid in reading powers of e on the log log scales, symbols hare been 

provided opposite the right ends, indicating the range of s covered by 
each scale. The arrows indicate the directions of scale numbering$. 

Since e-' is the reciprocal of ex, any number on an LL scale has its 
reciprocal directly opposite on the corresponding reciprocal log log scale. 
In the above example the reciprocal of 7.4 is therefore 0.135 and the 
reciprocal of 1.2215 is 0.8187, etc. In determining reciprocals in this 
manner the decimal point is always given by the scale reading. 

EXERCISES 

Determine the following powers of e: 
95. e5, eo.Oo8. 
96. e-4, e-0.9, e-0.074 e-0.0056. 

9 

Determine reciprocals of the following numbers by use of the log log 
scales : 
97. 8,500, 750, 64, 8.5, 0.951, 0.0754, 0.0056, 0.00014. 

Hyperbolic Functions. The e2x functions - 1 sinh x = &(ex - e-sj, cosh 

x = $(ex + e-x), and tanh x = - may be deterrnincd by sub- 

stituting the powers of e read from the log log scales. For example, 
sinh 0.434 = a(1.544 - 0.648) = 0.448; cosh 0.434 = i(1.544 + 0.648) 

= 0.408. Values ex = = = 1.096; and tanh 0.434 = 

1.544 and e-= = = 0.648 were taken from the LL2 2nd LL/2 
scales by only a single setting of the hairline to  0.434 on the D scale; 

= eo.%* = 2.382 was read on LL2 with the hairline set a t  OS68 on 
the D scale. 

e2; + 1 

2.382 - 1 
2.382 + 1 



EXERCISES 
Iktctmrinc vnlucs of the following hyperbolic functions: 

98. h l r  0.2 101. tanh 0.35 
99. h l i  3.0 102. tanh 2.1 
100. cosli 0.45 

l’lic inverse of the hyperbolic functions may also be evaluated by use 
of tlie log log scales. If the value of a hyperbolic function such as sinh x, 
cos11 s, or tmli x is given or known, the value of x may then be found 
by suhlituting IJtc known value into the formulas given below; in which 
A, 13, or C arc known: 

If sinh x = A, thcn ex = A + Jm 
If cosh s = I3, then ex = 13 + .\/B2 - 1. 

Js- If tanli x = C, then ex = 

The recommended procedure is to first substitute the known values 
into thc formulns, thus solving for ex. (The It1 and Rz scales are extremely 
convcnicnt, for this work.) Then set the hairline to ex on the appropriate 
log log sc*nlo and rend s a t  the hairline on the D scale. For example, if 
siiih s is givcn tls 2.12, s may be evaluated as follows: since A = 2.12, 
A + 2/11;?1 = 2.12 + 4 4 . 5 0  + 1 = 4.46. Now setting the hairline 
to 4.16 on I,L3, we wad x = 1.496 a t  the hairline on D. 

EXERCISES 
Ev:tIiiaL( P s, given the following values of the hyperbolic functions: 

103. sin11 s = !).%2 
104. siitli 1 = 0.G25 
105. cod> s = 3.73 

106. cosh x = 1.32 
107. tanh x = 0.917 
108. tanh x = 0.300 

Powers of Numbers. Raising numbers to powers by using log log 
sc:ilcs is : ~ s  simplc as multiplication. Ilistances along the log log scales 
are proportional to logtolog,N where N is any number appearing on a 
log log scale. Now if we wish to raise a number N to the exponent p to 
obtain N”, we must add the loglop by use of one of the scales on the 
slide, cithcr C, CI, CIF, or CF. In  equation form this operation would 
appear :is follows: 

Sctthg on Setting on 
log log S d C  slidc 

Reading on 
log log scale 
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The addition of the logarithm of the exponent p to the base 10 results 
in logloLog,Np. For example, to  raise 1.002 to the exponent 2, we set. 
the hairline to 1.002 on LLO, move 2 on CI to the hairline, move the 
hairline to the right index of CI, and read 1.004 at the hairline on LLC. 
In this example, N corresponds to  the number 1.002 and p to the ex- 
ponent 2. We have added loglo2 to logJog.1.002 because the distance 
moved by the hairline from 2 to  the right index of CI was propor- 
tional to logl& The result is 10g~dog,(1.002)~ = loglolog, 1.004. Hence, 
(1.002)* = 1.004. Other examples follow: 

( 1.00555)1.72 = 1 BO957 

Operations 

Set hairline at 1.00555 on Lu). 
Move 1.72 on CI to  hairline. 
Move hairline to  right index of CI. 
At hairline read 1.00957 on LM. 

(1.00555)17.2 1.0998 

0 per ations 

As above, except that the reading is taken from the LL1 scale. Since 
readings on LLI are tenth powers of readings directly opposite on LLO 
and the exponent 17.2 is ten times the exponent 1.72, it was necessary 
to read the LL1 scale. Other powers of 1.00555 may also be read with 
the hairline in the same position. (1.00555)172 = 2.589, read on LL2; 
and (1.00555)1720 = 13,500, read on LL3. 

(650)0.5 = 25.5 

Operations 

Set hairline at 650 on L U .  
Move right index of C to hairline. 
Move hairline to .5 on C. 
Read 25.5 at hairline on LL3. 
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(G50)0.005 = 1.0329 

Operations 
As above, except read LLl to obtain 1.0329. 

__-_ 

(O.!WMG)'  54 = 0.99456 

Operations 
Scl  hairline a t  0.00G46 on LL/O. 
Move 1.54 on CI to hairline. 
Move hairline to right index of CI. 
At hairline read 0.0945G on LL/O. 

(0.554)'.'' = 0.0060 

Operations 
\ Set hairline at 0.554 on LL/2. 

Move right index of C to hairline. 
Move hairline to 8.G5 on C. 
At hairlinc read 0.0OGO on LL/3. 

I __ 

- 4 ,  

(O.OOOIG)O 54 = 0.0089 

Operations 
Sct hairlinc: a t  0.00016 on LL/3. 
Move right index of C to hairline. 
Move hairline to 0.54 on C. 
At hnirlinc. !*cad 0.0080 on LL/3. 

- _  ___.____ 

(0.9435)" = 0.275 

I Operations 
7: 

- ;I 
I Set hairline at 0.0435 on LL/1. 

Move hairline to 22.2 on C. 
At hairline read 0.275 on LL/3. 

t i  I Move right index of C to hairline. 

I 
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Negative powers of numbers may be obtained by the use of recipro- 

cals. Remembering that N-' = -7 we may use the operations neces- 

sary to determine NP, then by reading the corresponding reciprocal 
scale, N-' is obtained. For example, suppose we wish to find 25-067 .  

We set the hairline at 25 on LL3, then move the right index of C to the 
hairline. Now moving the hairline to 0.67 on C, the result would be 
25°.67 if the LL3 scale were read. However, by reading 1.1, 3 at t h c  
hairline, the negative power 25- 67 = 0.1 16 is obtained. 

EXERCISES 

1 
NP 

Determine the following powers of numbers: 
109. (1.001G4)3.2 113. (0.99325)0.'5 117. (41.5)- 
110. (1.044G)2.54 114. (0.922)4.' 118. ( 1 . 3 1 ) - 3  
111. (1.95)2.7 115. (0.568)9.1 119. (0.877)-? 
112. (31)0."5 116. (0.114)0.252 120. (0.99245)-' ? 

Exponential Equations. Equations of the form NP = A, in which 
N and A are known quantities, may be solved for the unknown ex- 
ponent p. The problem may be stated thus: to what exponent p must 
N be raised so that the result is A? Steps in the process may be described 
as follows: (1) set the hairline to the number A on a log log scale; ( 2 )  set 
an index of CI or of C I F  to the hairline; (3) move the hairline to the 
number N on a log log scale; (4) read the exponent p on CI or CIF, 
whichever one was used in step (2). This process is the reverse of that 
used for determining powers of numbers. Examples follow. 

(25.5)' = 17.5 
Operations 

Set hairline to 25.5 on LL3. 
Move right index of C to hairline. 
Move hairline to 17.5 on LL3. 
At hairline read p = 0.884 on C. 

(2.4)' = 185 
Operations 

Set hairline to 2.4 on LL2. 
Move right index of C to hairline. 
Move hairline to 185 on LL3. 
At hairline read p = 5.97 on C. 
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EXERCISES 
, 
1 I Solve for the exponent p in the following equations: 

121. ( ! ) . l ) p  = 16.4 
122. (3.25)p = 71.5 

123. (0.915)p = 0.614 
124. (0.425)p = 0.0174 

Logarithms of Numbers. Common logarithms (logarithms to the 
base 10) may be found directly by use of the L scale. If the hairline is 
set to :I number on the D scale, the mantissa of the common logarithm 
of the number may bc read on the L scale. Both D and L scales are 
locabed on the body of the rule, hence no slide movement is required. 
The cIl:i~.:~ctrristic of thc logarithm must be determined mentally, keep- 
ing in mind that logtl)l is zero, loglo10 is 1,  logt,100 is 2, etc. Any number 
bct\vccm 1 and 10 will therefore have a characteristic of 0 and any 
number Iwtwwn 10 and 100 mill have a characteristic of 1, etc. 

E:s:irnplc 121,  ah^, may be solved by the use of the L scale, although 
riot as c:isily or quic~ldy as when the log log scales are used as pre- 
viously cxpl:Lincd. Since (9.1)p = IG.4, we may equate the logar- 
ithms of I)oth sides of the quation to obtain p.log10 9.1 = loglo 16.4, or 

log 16.4 1.215 ___ - ___ - - - 1.337. 
= log !I. 1 0.959 
In  tlic :il)ovtb cs:mple the hairline was set to 16.4 on D and the num- 

bcr 0.21.5 \vas rend :It the hairline on L. Since 16.4 is a number whose 
magriituclc, is I)etwecn 10 and 100, a characteristic of 1 was supplied to 
ol)tsin tlic complete logarithm 1.215. The logarithm of 9.1 was read as 
0.959 on I,, opposite the setting of 9.1 on D. The division of 1.215 by 
0.959 \\as p’rformccl :is :L separate operation using the CF and DF scales 
to ul)t:tiii 1) = 1.267. 

1 he log log scales :ire so constructed that logarithms to any  base may 
w4ly bc dvtcrmincd. By this method complete logarithms including 
I)otti c1i:ir:ictcristic and mantissa are obtained directly. Let a number 
“:L” reprexiit bhc base of logarithms which is to be used. Mathematically 
then, :ip = N or p = log,N, wherc the exponent or logarithm p is t o  be 
drtermined for numbcr N to the basc “a”. Taking logarithms of both 

. The nu- logeN sides to the base e, we obtain p.log,a = log,N or p = ___ 
log,a 

merator Iog,N is determined by setting the hairline to the number N 
on a log log scale, the numerator then appearing directly opposite on 
the D scale. The dcnominator appears directly opposite the base “a” 
set on  u log log scale. To obtain p the log,N is simply divided by log&. 

, T  
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As an example, in the expression log,o 9.1, the base a = 10. Setting 
t.he hairline tn 10 on T,L3, the index of C F  is set to the hairline. The 
hairline is then moved to 9.1 on LL3 and loglo 9.1 = 0.959 is read a t  the 
hairline on CF. 

Loglo 800 may be determined as follows: with the slide in the same 
position as before, move the hairline to 800 on LL3 and read 2.90 a t  the 
hairline on CF. This is not as accurate a result as can be obtaincd on 
the L scale where the more exact mantissa 0.903 may be read. Since 
the characteristic must be 2, the complete logarithm to the base 10 
is 2.903. 

To obtain logarithms, for example, to the base 8, we may set the 
index of CF opposite 8 on LL3. Moving the hairline to a number on an 
LL scale, its logarithm to  the base 8 is read at the hairline on CF. For 
example logs 200 = 2.55. 

In case many computations of the above type are to be made it will 
be advantageous to  remove the slide and to reinsert it reversed. This 
will make i t  unnecessary to turn the rule over during the com- 
putations. 

Use of the Log Log Scales for the Solution of Compound Inter- 
est Probldms. An interesting and useful property of the log log scales 
is their application to compound interest calculations. The relationships 
are expressed mathematically by the following equation : 

v = P(1 + ;)kn 
In this equation V represents the value of an investment after n years 
have passed and P is the principal sum, initially invested a t  an annual 
rate of interest r, compounded k times each year. 

As an example suppose we wish to determine the value of a Govern- 
ment “E” War Savings Bond a t  maturity, after ten years. The cost or 
principal invested is $18.75 and the rate of interest paid is approximately 
2.9 per cent, compounded semi-annually. The rate of interest must be 
divided by 100 to express per cent as a decimal. Therefore r = 0.029. 

Then V = 18.75 1 + - = 18.75(1.0145)20 = 18.75(1.334) = $25. 

The value of (1.0145)% was obtained by setting the hairline to 1.0145 
on LL1, moving the left index of C to the hairline, moving the hairline 
to 20 on the C scale, and reading 1.334 on LL2. 

( O-YT 



n scc-ond cx:implc, tlrtcrminc the rate of interest compounded 
: ~ I I I I I I : L I I ~  :itr w l i i d i  :i givcri prinvipal will double its value in a period of 
12 yv:irs. In this wsc V = 2 P and 2P = P(l  + ,)I2 or (1 + r)12 = 2. 
St.t 1 irig t,lw 1i:tirlinc :It 2 on LL2, we move 12 on C to the hairline. We 
t l w r i  IIIOVC t lw li:tii.lint> to the left index of C and read 1 + r = 1.0594 
at t l w  li:diiie on L1,l. Tlie rate of compound interest is therefore 
r = 0.0594 or 5.!bt pvr cent. 

Time Credit Payments. In installment buying the cost of an article 
is ort1in:irily paid i n  monlhly installments, each installment consisting 
of t,lii> inttwst on thc rc1m:iining unpaid balance plus an amount reduc- 
ing tliv 1)aI:inc.c. M:iny people purchase homes, automobiles, furniture, 
:uid oLlier articles by this method. The annual rate of interest is 
diviclccl by t l i v  naml)cr of payments per year, which is twelve in the 
c:isc of  n i o r i  t lily payments. The following equations express the 
r~lnt~ioiislii 1)s: 

in which 1' is the amount of each monthly payment, S is the entire sum 
to be paid in n monthly payments, and r is the annual interest rate. 

Suppox the buyer of an automobile wishes to pay $2000 of its cost 
in moiitlily in~tnllmcnts and has obtained a loan with an interest rate 
of G pvr ccmt,. What montlily payment must be made over a period of 
two yc:m in order to obtain title to the automobile? 

0.06 
12 r = __ = 0.005 and n = 2(12) = 24. 

P = $88.70 anproximately. 

'I'tie value (l.005)24 [vas obtained by setting the hairline to 1.005 on 
LLO, moving 24 on CI to the hairline, and reading 1.1270 at the 
liairline on LL2. The monthly payment will he approximately $88.70 
for two years. The total interest paid will be 24(88.70) - 2,000 = 
$1 28.80. 

Suppose the buyer wishes to pay $100 per month in order to retire 
the loan more quickly. The number of months required to pay the full 
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P 100 
100 - 10 0.1052 21.1, 

Log - 
--= P - r S -  - 

Log (1 + r) - Log 1.005 0.00498 amount will then be n = 

or approximately 21 months. 
As a second example determine the loan which can be retired in one 

year by means of $50 monthly payments when 5 per cent interest is 
charged. 

0.05 
12 r L - = 0.004167 

1 
\ . .  

S = $585 which is the amount of the loan which cnn be paid. 



Chapter 6 

TRIGONOMETRIC OPERATIONS 

The Trigonometric Functions. 'i'rigonomctric operations are those 
involving the ratios sine, cosine, tangent, cosecant, secant, and cotan- 
gcw t of aiiglcs. Thesc angular functions, the reader will recall, are ratios 
of the Iciigths of the sides in a right triangle. In Fig. 11, these ratios 
arc stated for convenient reference. 

sin A = a/c 
cos A = b/c 
tiin A = a/b 

cosec A = c/a 
sec A = c/b 
cot A = b/a 

b 
Fig. 11-Parts of the Right Triangle. 

A 

Tlic slide rule features mainly the sine, cosine and tangent functions, 
since tlicsc arc the most commonly used by engineers. Their reciprocals, 
cosecant, secant, and cotangent may be determined by use of any of 
thc reciprocal slide rule scales. 

Thrce trigonometric scales are located on the slide. Since each scale 
is numbcrcd in two directions there are actually six scales. All six are 
gr:itluatcd in degrees and decimals of degrees and are designed to be 
used with either the C or CI  scale, depending upon whether a scale is 
rctl or black. By setting the hairline at the angle, its function is read 
at the hairline on C or CI. Thus the trigonometric scales may be used 
for multiplying or dividing by angular functions just as are the C and 
CI scales. Since the scales are numbered in both directions, any division 
mark represents both the angle and its complement. It will be remem- 
bered that the sum of an angle and its complement is 90 degrees. For 
csample in Fig. 11 angle B is the complement of angle A. 

Coloring. The coloring system for the numbering on the trigo- 
noinet.ric scales is such that errors will be avoided. Angles are numbered 
in black when the function designated is to be read on the C scale be- 
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cause the C scale is black. Angles are numbered in red when the function 
designated is to be read on the CT scale because the CI scale is red. 
Hence black is used with black and red with red. 

End Zone Designations and Scale Numbering. Scale designa- 
tions are given in the left end zones in colors corresponding to the scale 
numbering. For all of the trigonometric scales the order in nhich the 
end designations are listed also corresponds to the placement of Dcale 
numbers. For example, the lower scale (nearest to the C scale) is num- 
bered entirely in black and its black end zone designation reads Cos S. 
The term Cos appears first, at the k j t  of the end zone, because when 
reading cosines the angles in degrees appear to the left of the division 
marks along the scale, for increasing angles the eye traveling from right 
to left. Conversely when reading sines, for increasing angles the eye 
travels from left to right, the angles appearing to the right of the division 
marks along the scale. Therefore the S appears at the right of the end 
zone. 

The tangent (upper) scale on the slide is designated by two capital 
T's, the first being red, the second black. The black end designation T 
and the black scale numbering from left to right indicate that tangents 
of angles ranging up to 45 degrees are to be read directly opposire on 
the black C scale. The red T and red numbering from right to left, for 
angles greater than 45 degrees, indicate that in this range tangents are 
read on the red CI scale. 

The above relationships repeat for the middle scale designated 
Sec T ST, the Sec T appearing in red for angles near 90 degrees, and 
whose secant and tangent functions are determined from the CI scale. 
The ST appears in black, for small angles whose sine and tangent func- 
tions are to  be read on the black C scale. 

Decimal Point Location. The sine varies from 0.10 to 1.0 for angles 
varying from 5.74 to 90 degrees, whereas the cosine varies from 1.0 to 
0.10 for angles varying from 0 to 84.3 degrees. Therefore all sine and 
cosine functions for angles listed on the Cos S scale vary from 0.10 to 1.0. 

The tangent varies from 0.10 to 1.0 for angles ranging from 5 . i l  to 
45 degrees. Therefore for angles shown in black on the T scale, tangents 
read on C vary from 0.10 to 1.0. However, since tangents vary from 
1.0 to 10.0 for angles between 45 and 84.29 degrees, the tangent read 
on CI for angles shown in red, must vary from 1.0 to 10.0. 

Sines and tangents vary from 0.01 t o  0.10 for angles between 0.57 
and 5.73 degrees. Therefore sines or tangents of angles shown in black 
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on ST vary from 0.01 to 0.10. However, tangents and secants vary 
from 10 to 1 0 0  for angles between 84.3 and 89.43 degrees. Therefore, 
for angles in this range, shown in red on the Sec T scale, the secant or 
the tmgcnt, vnrics from 10 to 100. 

EXERCISES 

I )c.tcwninc the following natural functions by use of the slide rule 
w:LIcx : 
I?.;. sin 76". 
IX. sin 54" 30' (Convert to 54.5"). 
127. sin 15" 24' (Convert to 15.4"). 
128. sin 0" 54' (Convert to 0.9"). 
l2!). sin 3" 51' 36" (Convert to 3.86"). 
130. cos 34.5". 
131. cos 74.7". 
132. ('OS 83" 30'. 
133. tan 15" 42'. 
134. tan 4!)" 18'. 
135. tan 77" 30'. 
1 3 ; .  tan S3.55". 
187. set: 89" 18'. 
138. t:1n 88.4". 
139. t:ur 2" 24'. 

EXAMPLES IN THE USE OF THE TRIGONOMETRIC SCALES 

In the vight triangle of Fig. 12 two sides are given. Procedures for 
tlvlviw~inirrg : ~ n g l ~ s  A :mtl I< and the length of side c follow: 

26 
A B 48 

Tan A = - = 0.542 from a separate 

operation using C and D scales. Next 
set the hairline to  0.542 on C and read 
A = 28.4" at the hairline on T. Tan 

B = - = 1.845 from a separate opera- 

tion using DE' and C F  scales. Next set 
the hairline to 1.845 on CI and read 

I3  = (i1.6" a t  the 1i:tirline on T. 
The a h v e  method is cumbersome and involves unnecessary work. A 

hetter proccdwe is as follows: set the right index of C at 48 on D; move 

48 
A 48' C 26 

__/_______I 
Fig. 12. 
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the hairline to 26 on D (0.542 now appears on C a t  the hairline) ; read 
A = 28.4" at the hairline on T. Angle B is determined directly as 61.6", 
the complement of A. 

The length c may also be determined as the hypotenuse of the triangle 
whose two other sides are known, by taking the square root of the sums 
of squares of the two known sides. A quicker method, however, is to 

divide 26' by the sine of the opposite angle. Thus ~ 2G' - - 54.6'. To 
sin .4 

obtain this result, leaving the hairline a t  26 on D, move 2S.4" on 5 to 
the hairline; read 54.6' on D a t  the right index of C. 

In  Fig. 13 angles A and C and side "a" 
are given in the obtuse triangle. Angle B 
and lengths b and c are to be determined. 
Angle B = 180" - 30" - 46" = 104". 
Sin B = sin (180" - B) = sin 76". Using 30' 

C 

A 
b the law of sines we may write the propor- A 

C - or in our a b tion - = __ - - 
sin A sin B sin C' 

Fig. 13. 

C - We may now make use of the principle case - = - - ~ 

sin 30" sin 76" sin 46"' 
41' b 

of proportion, previously explained in Chapter 3, to evaluate b and c. 
Setting the hairline to 41' on D, we move 30" on S to the hairline. K e  
now move the hairline to 76" on S, reading b = 79.5' at the hairline on D. 
Moving the hairline to 46O on S, we read c = 59.0' at the hairline on D. 

In  Fig. 14 the three sides a, b, and 
c are given. The angles are to be 
determined. Making use of the law 

of cosines, cos A = 
a :zo' - - -a2 + b2 4- cz 

2bc 
-400 + 900 + 964 1464 - -. Set the right 

A 
2(30)31.05 - 1863 

index of C to 1863 on D; move the b-30' 

hairline to 1464 on D; read A = 38.2" 
at the hairline on the Cos scale. Also 

by the law of cosines, Cos B = 2ac - 2(20)31.05 
464 To determine angle B we now set the left index of C to 1212 on D; 

move the hairline to 464 on D, and read B = 68.1" at the hairline on 
the Cos scale. Angle C is determined as 180" - A - B = 73.7". 

Fig. 14. 

- a2 + cz - b2 - 400 + 964 - 900 - 

1242' 

I 
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EXERCISE 
A 

Fig. 16. 

e 
Fig. 16. 

18 0 

25' 
Fig. 17. 

A' 

Combined Operations. Calculations involving products and quo- 
tients of trigonomeLric functions may be performed by using the trigo- 
nometric scales without actually reading the functions from the C or 
CI scalcs. I t  is only necessary to remember to use any scale as a C scale 
when the angles are numbercd black and as a CI scale when the angles 
are numbcred red. Esamples of this type of computation follow: 

I 9.2 sin 43" cos 70.4G" = 2.10 

Operations i 

Set right index of C at 9.2 on D. 
Move hairline to 43" on S. 
Set right index of C to hairline. 
Set hairline to 70.46" on Cos. 
Read 2.10 on D a t  hairline. 
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10.1 tan 18.5" tan 48" = 3.75 

Operations 

Set left index of C at 10.1 on D. 
Move hairline to 18.5" on T. 
Move 48' on T to hairline. 
Read 3.75 on D a t  right index of C. 

= 5.69 12.8 tan 19"sin 47" 
cos 25" tan 32" 

Operations 

Set left index of C at 12.8 on D. 
Move hairline to 19" on T. 
Set right index of C to hairline. 
Move hairline to 47O on S. 
Move 25" on Cos to hairline. 
Set right index of C to hairline. 
Move 32" on T to hairline. 
Read 5.69 on D at right index of C. 

Vector Components and Complex Numbers. ;i vector is a 
quantity having both magnitude and direction. I n  Fig. 1s a vector R 
is shown having a magnitude represented 
by its length and a direction 8, which is 
the angle between the vector and the 

I x-axis. T h e  vector component x, in the 0 X 
x-direction, is equal to  R cos 8; the com- Fig. 18. - 
ponent y, in the y-direction, is equal to  
R sin 8. These components may be determined by use of the sine and 
cosine scales. For example, let R = 8 and 8 = 27". We set the right 
index of C at 8 on the D scale. Moving the hairline to 27" on Cos, 
we read x = 7.13 at the hairline on D. Moving the hairline to 2 i"  on S, 
we read y = 3.63 at the hairline on D. 

From the theory of complex numbers, in which j = XI?, it may be 
shown that eje = cos e + j sin e. Multiplying both sides by R we ob- 
tain R-eje = R cos 8 + j R sin e. Here the complex number R .elR cnn- 
sists of two parts, R cos 8 being the real part, j R sin 8 being the imagi- 
nary part. The number may be represented graphically in Fig. 18 by 



the pointj A wliosc c:oordin:Ltcs arc x and y. In  t,he figure the x coordinate 
rcprcwrit,s t lic rc:d p:irt nntl tlit: y cw)rdinatc the purely imaginary part. 
'l'lic y-axis for  thc ini:tgin:wy part is perpendicular to the x-axis for the 
r e d  part of the coniplrs niimt)(br. 

1 IIP  :il)ove (lxprwsion m:iy I)c simplified by noting that R cos 0 = x 
arid I t  sin 0 = y. 'I'licn It.(.j" = s + j y. The x ant1 y vnlucs are deter- 
mirtcci as voclor c:omponent,s of I t  as previously cxphined. This operation 
is c : i l l cd  cli:tnging from csponcntial form to comporicut, form. 

In c:isc t.lic complcs number is csprcsscd in component form, with x 
antl y givcw, it may I)c ctinngcd inlo tlic e?tponenti:d form if desired. 
1 lit! r(-l:if iotisliips arc easily scon from Fig. 1s. y/x = tan 8 and 

R = . . A s  :in cx:tinplc, corisitlcr the complex number 7.2 + j 4.5 = 

R .  e''), in  w l i i c . 1 1  11. :mi  :ingle 0 :we t)o t)c determined: 

r .  

,. 
SIII 1 )  

tan 0 = y/x = 4.517.2 

Set right index of C to 7.2 on D. 
Move hairline to 4.5 on D. 
Itcad 0 = 3'2" on T at hairline. 

11 = y/sin 0 = y/sin 32" 

1r:wing hairline at 4.5 on D. 
Move 32" on S to hairline. 
1le:id I t  = 8.49 on D a t  right index of C. 

\Vc n o \ v  lt:ivo :is 1,lw r c w i l t  7.2 + j 4.5 = 8.49 C ~ ~ ~ O .  

EXERCISES 
143. D(.tc~rmirw tlic x and y components of the vector R = 16.8 if 

14 1. Solw for s antl y in the equation 21 eiQ = x + j y, if 0 = 27". 
145. CIi:mgc tlie complcx number 14 + j 8.9 to exponential form. 

0 = 54". 

Angles in Radians. hnglcs in radians may be converted to angles in 
dcgrccs by use of a multiplication factor. Since one radian is equal to 
180 - = 57.3" approxim:itely, the angle in radians must be multiplied 

by 57.3. For convenicncc:, a mark designated r has been placed at this 
point on the C and D scales on one face of the rule. For example, to 

x 
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convert 1.71 radians to degrees, set the left index of C at 1.71 on D; 
move the hairline to r on C; read 98" on D a t  the hairline. To convert 
14.9" to radians, set the hairline at 14.9 on D; move r on C to hairline; 
read 0.260 radians on D at the right index of C. 

Operations Involving Very SmaJl Angles. It will be remembered 
that for very small angles the sine function, tangent function, and the 
angle in radians are very nearly equal. Thus within the limits of slide 
rule accuracy these three functions for very small angles may be used 
interchangeably. Since angles are quite often expressed in degrees, 
minutes, and seconds, a special mark (a single dot) is provided on the 
ST scale for the conversion of minutes to radians. One minute is equal t o  

radians. The conversion radians which is approximately - n- 1 
Iso(so> 3437 
mark therefore appears on the ST scale approximately at 3440 on the 
C scale. Its use may be illustrated by the following example: to de- 
termine the angle in radians or the sine or tangent function of 0" - 49.2', 
set the hairline at 49.2 on D; move the minute mark on ST to the hnir- 
line; read 0.0143 on D at the left index of C. Hence 0.0143 is the angle 
in radians or we may say that the sine or the tangent of 0" - 49.2' is 
equal to 0.0143. 

An additional mark is provided on the ST scale for the conversion 
of angles in seconds to radians, or for obtaining the sine or tangent 
of such angles. This consists of a double dot. One second is equal to 

-___ radians, approximately. Thus the conversion mark n- 
180( 60) 60 - 206,240 . .  
for seconds appears opposite approximately 206,000 on the C scxlc. It 
is of use in operations such as determining the sine or tangent of 0" - 
0' - 29'. Setting the hairline a t  29 on D, we move the seconds mark on 
ST to  the hairline, reading 0.0001406 on D at the left index of C. 



Ch,apter 7 
APPLICATIONS TO CIVIL E N G I N E E R I N G  

by E. I. FIESENIIEISER, B.S., M.S., C.E. 

Purpose. The purpose of this chapter is to illustrate some of the 
many applirations of the slide rule to civil engineering problems. (Other 
chapters illustrating other fields of engineering follow.) No attempt is 
m:ide to covcr the entire field of civil engineering since to do so would 
rcciuire many volumes. Only a few typical problems from various 
brunclics of this field are discussed. Equations, where used, are given 
without ticrivntion. 

Accuracy. The slide rule is always useful for checking even though 
its :~ccuracp is not always sufficient for a particular problem solution. 
In calculating dimcnsions and long lengths with precision it is often 
nwcss:iry to resort to the use of five or seven place logarithms, or to 
extensive tables of natural functions for use with a mechanical calculator. 
1 tiis is part icularly true in surveying problems. In  such cases errors 
may sometimes be discovered by approximate slide rule checking of a 
jmcisely c:Llculatcd result. In the field of stress analysis or design the 
accur:wy of the slide rule is ordinarily sufficient. 

r .  

SURVEYING PROBLEMS 
Earthwork Quantities. The slide rule is useful in calculating the 

:mount of earthwork to be moved for the construction of a highway. 
‘l’lic contour of the ground is detcrmincd by leveling along the proposed 
liiic o f  the road and the area of the cross sections perpendicular to this 
linc :irc calcrilat,ed a t  various stations along the road. V, the volume of 
(wth to IE moved, may then be determined by either of two methods. 
‘I’tw first method is called the “average end area” method in which 
1‘ = $(A1 + A?)L, where A, and Az are cross sectional areas and L is 
the dist:mcc bctwcen them. For example: A1 is calculated as 162 (ft.)z 
:ind A2 as 181 (ft.)’, with the distance L between the slctions 54 ft. 
V = i(l(j2 + 18-2)5-1 = 173(54) = 9,340(ft.)3 by slide rule. 

46 
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While the above method is simple, it is not exact. When greater pre- 
cision is desired the “prismoidal” formula is used. This method involves 
an additional area A,, the area of a cross section half-way between A, 
and Az. By the prismiodal formula V = &(AI+ 4A, + A2)L. For ex- 
ample, for A, = 500(ft.)*, A, = 684(ft.),2A2 = 896(ft.)’, and L = 92 ft.: 
V = i(500 + 2736 + 896)92 = &(3,312)92 = 48,000(ft.)3 by slide rule. 

Exercise 146. Calculate the volume of earthwork to be moved be- 
tween two stations 73.4 ft.  apart if AI = 124 (ft.)*, A, = 136 (ft.)’, 
and Az = 154 (ft.)z. (a) By the average end area method; (b) by the 
“prismoidal” formula. 

Taping. When measuring distances by tape in the field, many times 
it is necessary to measure along a slope in hilly country, although the 
horizontal distance is desired. It is then necessary to correct the slope 
measurement. This may be done if the angle of slope is determined by 
use of a transit. If S is the slope measurement or taped distance, h the 
horizontal length and A the angle of slope, then h = S -cos A. For ex- 
ample if S = 100 f t .  and A = 15”: h = 100 cos 15’ = 96.6 ft. by slide 
rule. 

A common source of error is the use of a tape too long or too short. 
However, if the tape being used is compared with a standard and the 
error in its length determined, a correction may be made. For example, 
in measuring a line by use of a 100 ft. tape the measured distance was 
864.91 ft. The tape was found to be 0.14 ft.  too long. The correction is 

864.91(0.14) = 1.21 ft. by slide rule. This error of 1.21 ft .  must be 

added to 864.91 ft.  to give the correct length as 866.12 f t .  (Had the 
tape been 0.14 ft. too short, the correction would have been subtracted.) 

100 

Exercise 147. A distance measured by a 50 ft.  steel tape was found 
to be 484.15 ft. If the tape used was actually 0.028 ft. too short, what 
is the true length of the line? 

Latitudes and Departures. In  locating a point with reference to a 
previously located point from field survey data, the method of latitudes 
and departures is often used. The latitude is defined as the component 
of a given distance in the north-south direction whereas the departure 
is the component in the east-west direction. The bearing of a line is the 
angle betweell the line and the true north. 
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ly 

A 
Fig. 19. 

I I 

Fig. 19 rcprcscnts :L plot of :L field traverse made by taping distances 
AB, 13C, and CD. At cach point a bearing was taken. These and the 
taped distances are recorded in the table. The line AD was not measured 
in the field. Nevcrthcless its length and bearing are desired. 

It may bc seen from the figure that the latitude of each distance is 
the length multiplied by the cosine of the bearing angle and the de- 
parture is the length multiplied by the sine of the bearing. The necessary 
multiplications, performed by slide rule, are set down in the appropriate 
colurnrls of tho table. After summing the distances we observe that 
point 1)  is 51.4' north and 226.0' east of A. Length DA is therefore 
d(51.4)2  + (22ci.0)2 = 231.S'. Angle 0 in the figure is then arc sin 

23 1.8 

-__ 

- -  - 1 2 . 8 O  or 12"-448'. The same angle may be determined from the 
51.4 re1:itionsliip 0 = arc tan 22(i which also yields 12.8". The bearing of 

point A from point D is then 90" - 0 and since A is south and west of D, 
tlw 1)e:iving is tlcsigriated S. 77" - 12' W. The same calculations, per- 

formed with 5-place logarithmic tables, 
result in a bearing of S. 77" - 09' - 
54" W. and a length DA = 231.84'. Line 
IIA represents the closing line of the 

'>C traverse. It is obvious that the slide 

55 '30 '- 
\ 
\ ', 

\ rule calculations provide an acc1irak 

Exercise 148. Solvc for the length of 
the closing line D A  in the traverse shown 
in Fig. 20. Calculate ils bearing. 

D 

Fig. 20. 

Inaccessible Distances. In running a survey line obstaclcs may 
occur 011 the line of sight or it may be impossible to measure certain 
lengihs such as the distance across a river. In  such cases it is necessary 
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to extend the line by indirect methods. Fig. 21 illustrates a method for 
passing an ohst,acle by use of angular deflections. Point B is a point 

C 

OBSTACLE 

Fig. 21. 

visible from A. The procedure then is to measure distance AT3 and the 
angle 8. The angle at B is then taken as 2 0 and the length BC as equal 
to AB. By sighting along BC point C may be located. Distance AC is 
then 2(AB) cos 0. For example if AB measures 91' and 8 = 21.8", 
then AC = 2(94') cos 21.8" = 174.6'. 

Exercise 149. If, in passing an obstacle, the deflection angle measured 
by transit at A was 37" and the taped distance AB was SG ft., determine 
the length AC. 

Fig. 22 illustrates a method for extending a survey line acrmis a river 
when it is not practical to measure directly across. Point C is visible 
from either A or B. 

Fig. 22. 

Angles a t  A and B are measured by the use of a transit and distance 
AB is accurat,ely measured by tape. The angle a t  C will then be 
180" - A - B. Then by the law of sines AB = xC' For example if 

A = 73" - Is', B = 101", and AB = 54', then C = 180" - '73.3" - 

AC sin B 

from which AC = 534' by slide AC sin 101" COS 11" 1010 = 5.7". - 54' - - sin - 5.7" = - sin 5.7"' 
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rule, using the proportion principle previously explained. A calculation 
using 5-place logarithmic tables yields AC = 533.7'. 

Exercise 160. Referring to Fig. 22, determine the distance AC 
across a river if AB = 75 ft. and angles at A and B are 47" and 115O 
respec t i vcl y, 

Stadia Calculations. A stadia transit is an instrument for determin- 
ing 1iorizont:d and vertical distnnccs from the observer to a point by 
taking readings on a rod heici vertically at the point. By this method i t  
is unncwss:Lry to tape the distance from the observer to the point. The 
transit teltwope is provided with an upper, lower, and a middle hori- 
zontal cross hair. The upper and lower cross hairs are equidistant from 
the middle cross hair which represents the line of sight of the telescope. 
A speci:rl stadia rod is held at the point to be located and the transit is 
focused on this rod. Itod readings are taken at the upper and lower cross 
hairs rind the rod length between these points, called the rod intercept r, 
is detcrmincd. Also the vertical angle e, between the line of sight and 
the horizontal, is read a t  the transit. 

The horizontal distance H from the observer to the point is then cal- 
culated by the equation H = a cos 8 + kr cos2f3, in which a and k are 
instrunierital constants, known for any particular transit. The vertical 
distance from the telescope to the middle cross hair is V = a sine + 
$ 1 ~  sin 28. For example, suppose the upper and lower cross hair read- 
ings to  be 4.32' and 1.14' respectively, with a vertical angle 0 = 26". 
The rod intercept r = 4.32' - 1.14' = 3.18'. Assume instrumental con- 
stants a and IC to bc 1' and 100 respectively. Then H = 1 * cos 26" + 
lOO(3.18) cos2 26" = 0.9' + 257 = 258'approx. V = 1 sin 26" + *(100). 
3.18 sin 52" = 0.4' + 125.1 = 125.5'. This is the difference in elevation 
between the transit telescope and the center of the rod intercept. Ordi- 
narily st:idia distance calculations are made only to the nearest foot, 
for ivliicli t lie slide rule provides ample accuracy. 

Exercise 151. If the instrumental constants a and IC are 1' and 100 
respect ivcly, dctcrmine the vertical and horizontal distances V and H 
from the following st:idi:i readings: 

Vertical Angle e Rod Intercept 
(a) 10"-15' 5.42 f t .  
(b) 7"-30' 2.14 f t .  
(c) 19"-45' 4.25 ft. 
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Radius and Degree of Curve of a Curved Track. In  railroad track 
surveying it is possible to calculate the radius and the degree of curve 
from measured lengths of a straight chord C and the mid-ordinate M. 

5730' D = -  (approx) and 

50 D = 2 arc sin 

r* 

b I = 2 arc sin - 2R' Fig. 23. 

In  Fig. 23 formulas for calculating the radius R and degree of curve D 
are given. The degree of curve is  the central angle subtended by a 100' 
chord. As an example, S U D I ) ~  the distance C to be 300' and a t  150' from - I - -  

- - 90.000 + 18.5 
l i . 2  A the ordinate M is found to be 2.15'. The radius is then 

5730' 
5230' approx. and the degree of curve is D = 5230' = 1.093' = 1" - 

300 
10,460 5.7'. The central angle I = 2 arc sin - = 2(1.644") = 3.2SS". 

Exercise 152. Determine the radius R, degree of curve D, and central 
angle I for the following values of the chord C and the mid-ordinate M: 

C M 
(a) 208 ft. 6.4 ft. 
(b) 147 ft. 5.65 ft. 
(c) 61.5 ft. 1.27 ft. 

STRUCTURAL DRAFTING 
Lengths and Bevels. The structural steel draftsman is concerned 

mainly with the calculation of the lengths of members and the details 
of their connections to other members in the structure. These lengths 
and details are shown on drawings which are used in the shop for fabri- 
cation of the various members. Many times it is necessary for members 
to be skewed and to connect to other members at an angle. The skew 
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of a cmnclcl ion is oidinarily inc1ic:itccl on the drawing hy a bevel which 
is a figrtrch c*:il(~rtlatcd to the nearest ?,& of an inch for the distance per- 
pcridtc.rtlar to a h s c  line 12" long. Thus in Fig. 24 the distance It is 
!<no\\ 11 as t Iic. bevel. 

i 
BEVEL 

I- 20'- o 

Fig. 24. 

Fig. 5-I rcprcscnts a floor plan in which columns and beams arc shown. 
The I)cxnls arc indicated by heavy lines and arc marked B1 to B6 
inclusivc. lhtc to the skew of beam B l  i t  will be ncccssary to calculate 
tlic Icngf lis of 131, 133, and I34 and tlic bcvel due to thc skew. Bcam B1 
will be connected at  the mid point of the flanges of columns C and D. 
All clistnnccs must be figured to the nearest XG". 

The bevel can be calculated or checked by slide rule, using the prin- 
ciple of proportion. Column D is 4'-0 south of column C and its  flange 
face is 19'-1'' or 229" east of that of column C. The Level R is found 
as follows: 

R 4' - 0 48" 
12'' l!)' - 1 229" 

It = 28'1 

-- _ -  

The length of Bl will be 4(22!))2 + (48)2 = 452,500 + 2,300 = 
454,800 = 23-2" = 19' - 6". The R l  and R2 scales were used for de- 
termining the squares and the square root of their sum. 
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The length of B4 will be greater than 16'-0. The increase in length will 
D' 48" be termed D' and will be determined by the proportion 

= 229H D' 48" or - - - from which D' = 15.73" or 1'-3f" by proportion. Then 75.1" - 229" 
the length of B4 will be 16'-0 + 1'-3$" = 17'-3s". 

The proportion for determining the increased length of B3 will be 

48" from which D' = 32.5" or 2' - 8;". 48" D' 
229" Or 155.1" = 229"' 

-- - D' 
12' - 11t" 
Hence the length of B3 is 16'- 0 + 2'- 84" = 18'- Si". 

Exercise 163. Determine the lengths C and bevels R for values -4 
and B given below: 

Pig. 26. 

The Miter Joint. A miter joint is one in which intersecting members 
meet on a common line of contact. I n  detailing the top chord members 
of a bridge truss, and in other cases, it is important to know the angle 
or bevel of the line of intersection. Fig. 26 indicates the manner in which 
this angle, designated 6, may be determined. The depths d,  and dr and 
angles of slope 81 and 8 2  are known for the intersecting rnc~rnl,er.~. The 

r .  l a n  + = 
dl cos ez - dz cos el 
d2 sin el - dl sin e2 

Fig. 26. 

tangent of angle 4 may be determined from the formula. As an example: 
dl = 12fH, dz = 123", 8, = 48" and = 9"- 30'- 45" or 9.51". Then 
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=- -  4'22 - 0.588. 12.75 COS 9.51" - 12.5 COP 48" 12.58 - 8.36 - - __- tan d = 12.5 sin 4@ - 12.75 sin 9.51" 9.28 - 2.10 7.18 
,#, = arc tan 0.588 = 30.4'. 

'I'll(, I ~ v e l  I t  = 12 tan 4 = 7.06'' or 7wc. This bevel, calculated by 
slide rdc, WLS also calculated by 5-place logarithmic tables. Both 
mcthotls givc the same rcsrilt to the nearest w{. 

Determine the bevel R for miter joints having the 
following properties: 

Exercise 154. 

01 - - -  82 d, dz 

(b) 49" 8' 11;" 9$w 
( e )  52" 0" 73" 7%" 

- 
(a> 40" 11" 14" 12" 

STRUCTURAL ANALYSIS 

The Truss. In the stress analysis of structural members i t  is necessary 
to ~ v o l k  constantly w i t h  the applied forces. A force, being a vector 
quant,ity litlvii~g both magnitude and direction, may be resolved into 
com poricm I s  (ns in Chapter 6). If convenient, the components may be used 
septlratcly. As an example, Fig. 24 (a) shows a force of 250# acting on 
a tivo incm1)er truss. The forces in members A and B are to be deter- 

n 

mined. For convenience the force A and the applied 250# force are 
resolvcbtl into their horizont:il and vertical components. Force B is hori- 
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zontal and has no vertical component. All forces and components acting 
at point 0 are shown in Fig. 24 (b). 

To maintain equilibrium the sum of vertical forces must be zero and 
the sum of horizontal forces must also be zero. Hence from Fig. 2 i  (b), 

192 - A sin 20" = 0, from which A = 7 = X?=. -1I-u I3 - 
A cos 20" - 161 = 0, from which B = 161 + 562 ('0- 20' = l ( i l  + 
527 = SSS#. All of the operations are performed using I I I ( .  C ' o -  5 ~ ( Y L I c ~ .  

Exercise 166. Calculate the stresses in the member- o f  tr i i -+-  -hou 11 

below in figures 28 (a) and (ti). Indicate whether thc stic-.-c- c:il~~\il:~tcd 
represent tension or compression. 

1 92 
sin 20" 

(4 
Fig.  28 (a). 

A Steel Beam. I n  determining the stresses in a beam it  is necessary 
to determine the forces acting, the shear, and the bending moment. 
The internal stresses in the material are then determined from the 
theory of the strength of materials. As an example, Fig. 29 illu.;trzltcs 
a steel beam designed to carry a. concentrated load of 8,SOO# on a 
span of 11'. 

8Bw. 

4' 7' 8WF17 
1 r S = 11.1 (in.)3 
_____. 

0 Aw = 1.81 (in.)2 
R N' 

Fig. 29. 
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Its section modulus S and web area Aw are given for use in determining 
the nionicnt and sliear stresses in the material. 

‘I’lic~ Icft rc.:iction force It may be determined by proportion, utilizing 
R 7’ 

the distances from point 0 a t  the right end of the span. - - - 
w h i d i  I< = 5,C,OO#. This force is the shear acting at the left of the load. 
II will I)c resisted primarily by the web area. Hence the shearing unit 

8,800 - 11’’ from 

5 ,  (io0 
1 . X t  

sl r ( w  - ~ - = 3,050# pcr sq. in. 

‘l’lw inointmt undcr the S,SOO# load will be the product R x 4’ = 
5,(iOO( 1) = 22,400’#. The unit stress due to this bending moment will be 
22,400( 12) 
- -_ = lO,OOO# per sq. in. 11.1 

Strcsss :inalysis p ro lhns  lrnving to do with steel beams are many and 
v;iriccl. T l i c i  above cxamplc is intcndcd to serve merely as an illustration 
of t liis tylic of calculation to which the slide rule is well adapted. 

Exercise 166. Solve for the end reactions R L  and RR and for the 
n i o t n c s n l  in th: I)eani a t  c:ic4i load point. Calculate the maximum bend- 
i i i R  st ross for the lo:ids sttown if tlie section modulus of the beam is 
I0T.S (in.)  { .  

6.400. 7500’ $900’ z900’ 2.160* 

I 1 
RL 26 RR 

Fig. 30. 

A Reinforced Concrete Beam. For a simple concrete beam, rein- 
forced by steel to resist tension, i t  is necessary to determine the location 
of the neutral axis of the cross section before the bending moment 
stresscs can be determined. The strength of the concrete in tension is 
ignored. In Fig. 31 the cross section of a beam is shown, for which the 
concrete compressive unit stress f, and unit stress in the steel f. are to 
be determined when the moment is 440,000”#. 

1 

_. . . .. .. .. . 

ARCHES 5 i  

(a) CROSS SECTION (b) STRESS DIAGRAM 

Fig. 31. 

The effective area of steel is equivalent to n times its nctu:tl area. 
where n is the modular ratio, assumed equal to 10 in this case. The  
effective steel area is therefore 2 X 10 = 20 sq. in. The neutral axis 
may be located by equating the moments of effective tensile and coni- 

pressive areas about this line. Thus 8X (g) = 20(1G - 1) or s‘ + 
5X - 80 = 0. This is a quadratic equation which may be solved for X 
by the factoring method previously dcscribed in Chapter 3.  5ctting 
the right index of the C scale a t  80 on D, the hairline is moved t o  
6.78 on CI where the simultaneous hairline reading on D is 11.7s. t lw  
difference of these two readings being 5. The neutral axis is tlic>rcfort: 
located a t  X = 6.78”. The lever arm between the forces C ant1 T is 

16 - 3 = 13.74“, and the moment is either C or T times this lever arm. 

Hence -.fc-(13.74) = 440,000 and f, = 1,180# per sq. in. From 

the equation 2f8(13.74) = 440,000, f. = 16,000# per sq. in. 

Exercise 167. A concrete beam 124 in. wide, with an  effcct ivc tiopth 
d of 27 in., is reinforced by four 1-inch dia. rods. If the vnluc of 11 is 10. 
locate the neutral axis and determine f, and f, for a bending moment of 
1,500,000 in. Ib. 

A Filled Arch. Arches are frequently used to  carry loads ovcr lung 
spans. They are economical structures provided the end supports are 
capable of withstanding the thrusts transmitted by the arch rib and 
provided the curve of the arch axis is properly designed. h n-ell designed 

X 

8 (6.78) 
2 



arch (wn (b n i l l  l)e such that, thc applied loads produce primarily forces 
or ~ l t t r i > t ~ .  \ \ it11 titile o r  no t)c~ntlit~g moment. 

Fig. 32. 

Til  l’ic. 32 t I t ( .  priniary loatl to bc (wried consists of an earth fill. The 
noigltl ol l l i ia  f i l l  is tcrmcd \v Ib .  per cubic foot. In order to carry this 
loatl \\ i l l l o u t  introtlucing hmling moment the arch axis curve must be 
t l ( . t ( . imi r l cd  by the eqwtion Y = 11 (cosh d E ( x )  - l ) ,  where H is the 
Iiot~tzorital cwmponcnt of the thrust to t)c resisted by a section of arch 

rib onc foot in width. If the ratio of depths of fill is g = - r, then 

__ 

H =  \ V I 2  
4[Log,(g + dgTrl)]$ 

The nnglc of slope 4, at the end of the arch, may be determined from 

thc expression tan 4 = 11 dE --sinti (idi). Then the vertical com- 

poncxnt of tlirust V = IT. t:in 4 and the maximum thrust T = __ 

A s  :in cwniple for slide rule computation the following data will be 
used: 1, = ZOO’, w = 120 Ib. per cu. ft., r = 40’ and h = 10’. g is then 

13 
cos 4. 

1,200,000 - 
(Log,9.9)2 

- - - 120(200)2 
4 * [Log, (5 + a ) ] 2  - 5 and H = 

10 + 40 
1 0 

- - _-__ - 

Tan 6 = I O J x -  sinh (;!.&E) = 0.2294 sinh (2.294). 
228,000 228,000 
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Since sinh (2.294) = - e-2.29p), tan 4 = 0.2291.:(9.900 - 
0.101) = 1.124, from which the angle 4 = 48.4”. 

H 
cos ql V = H tan r$ = 256,500 lb. and T = - = 343,000 lb. 

) x 
The equation locating the arch axis will be y = 10 cosh - 1 . 

By substituting values of x equal to any horizontal di-tclncc froin t he  
center line, the corresponding ordinate y may be determinctl. I‘or es- 
ample, at the quarter point of the span, x = 50’. At this poilit y = 

10 cosh - - 1 = 10[$(e1.147 + e-I.l4’) - 13 = 10[3(3.11.5 + 0.318) - ( 43.6 50 ) 
For structures of this type the log log scales are very useful in evalu- 

ating logarithms and hyperbolic functions. 
Exercise 168. Determine the economical curve equation for :I 300 ft.- 

span filled arch if the depth of fill h is 6 f t .  at the center anti t h c .  ri-e r 
is 50 ft.  If the fill weighs 120#/cu. ft.  determine the force3 11, \-. :tiid T 
for a one-foot width of arch rib. 

A Gravity Dam. Gravity dams are structures in which t h i ,  nvight 
of the dam itself is utilized to balance the pressure of water clritl Io pre- 
vent overturning. In  calculating the pressures on the I u a c  mitl in in- 
vestigating the stability of such structures, the weight of c:rc.h JXWt of 
the dam is calculated separately. Then the moment of all f ~ t ~ . :  about 
a common point is determined and the resultant force acting on the 
base of the dam is located. 

( 

11 = lO(1.731 - 1) = 7.31’. 



In Fig. 3.7 (a) :i simple dam is shown which is to retain a 30‘ head of 
nntct. wcbigliitig 62.4 11). p’r vu. f t .  For analysis :i width of dam of one 
foot, i ) ~ ~ t . l ) ( ~ ~ i ( i i ~ ~ i t l ~ t r  to the figrim, is uscti. The  dam is to be constructed 
of ( * o t i ~ ~ t v t ~  :issuinctl lo  weigh 13.5 it) .  pcr cu. ft. Fig. 33 (b) indicates the 
s q ) : t t x 1 ( ~  1 ‘ o r c ~ ~ s  mi(1 t Iicir locatims. Distance x, locating the resultant 
vcvticd win1)oncri t, I’, is to t x  tlctermined. 

1 l i f t  \r:tt,(*i. ~m~ssrtrc acts 1iorizon~~:illy and at  the bottom of the dam 
11:~s :in ititoiisity of‘ 02.3(30’) = 1,872 lb. per foot. The total force due 
t,o \v:itvt. ~ i t ~ ( ~ s s i t ~ ~ ( ~  is tlic :L~C:L of the force triangle and is termed F,. 
I+’, = -; ( I  ,572) = 28,100 It). ‘rlic forccs F, and F3 are due to the weight 

of ( * o t t ( ~ t ~ ~ t ~ ( ~ ,  172 hcing eqw~l  to 145(4)32 = 18,600 lb. and F3 being 
I 1.y I l.5)32 

poiiil 0 is hI:t i i (xxl  by the momcnt Pas, shown in Fig. 33 (b). Therefore 
(I S.(iOO + 33,(iOO) s = 2S,lOO( 10) + 18,600(2) + 33,600(8.83). 

r .  

:;o 
- 

~~ _ -  - 33,600 Ib. The momcnt of forces F,, Fz, and Fa about -> 

6 15,000 x - 5’.,2()() - 11.78’- 

Tltc ( ~ ( w t  ricity c ,  mc:Lsurcd from tlie ccntcr line of the base, is then 
I 1 .:SI - !).25’ = 2.53’. l’rcssurcs pl and pz indicated in Fig. 33 (c) may 

now I,c tlctcriiiinctl from the equations pl = E( 1 - F) 
L 

= 2,820(1 - 0.821) = 506 lb. per sq. ft.; and 1s.3 

112 = ”( 1 + ;:) = 2,820(1 + 0.821) = 5,1401b. persq. ft. The resultant 

is loc.alcc1 wiLliin thc base, since s < 18.5’, which indicates that the 
(lam i- st:ilile :Lnd will not overturn. 

Exercise 159. Iktc~rminc~ the b:rse prcssures pl and p2 for a dam 30 ft.  
liixli it’ t l i c  wit11 ti is 3 ft. at, the top and 14 ft. a t  the bottom. The depth 
of n x t v r  txbtaincd is to be 24 ft. and the weight of masonry is 145#/cu. ft. 

I, 

Chapter 8 

A P P L I C A T I O N S  T O  M E C H A N I C A L  E N G I N E E R I N G  

by R. A. BUDENHOLZER, B.S., M.S., Ph.D. 

INTRODUCTION 

The subject of mechanical engineering is so diversified that it \\auld 
be quite impossible to cover even a small portion of the many types of  
problems which may readily be solved with the aid of the slide ruk. 
Although many of these problems are simple and require only the uae 
of the basic scales designed for multiplication and division, there are 
others which require considerable skill in the use of the more compli- 
cated scales. It is the purpose of this chapter to acquaint the student 
with some of the latter and to  illustrate their solution with the Post 
Versalog Slide Rule. 

There are several fields of mechanical engineering in which ai1 a h n -  
dance of problems exist whose solutions are particularly suited t o  the 
slide rule. Of these, perhaps the most important are thermodynamics, 
heat transfer, and machine design. In  this chapter, each of these branches 
will be treated separately, and a few representative esamples, together 
with their solutions, will be included. The treatment assumes that the 
student already possesses a basic knowledge of the use of all scales, 
and that he is familiar with the technique of setting decimal points and 
of performing other commonly employed operations. In studying the 
illustrative examples, the student is urged to follow the operations 
listed, and a t  each step to call to mind the reason why the particular 
operation was employed, and why it accomplishes its objwt i \ -c . .  In 
this way, a more basic understanding of the rule will gracliidly be 
achieved, leading soon to  a complete mastery of its operation. 

d 

THERMODYNAMICS 

The science of thermodynamics is related to the behavior of gases, 
liquids, and solids when under the influence of the interchnn, ‘re of heat 
and mechanical energy. A large number of problems in which the use 
of the log-log scales are particularly valuable are those involving the 
behavior of perfect gases undergoing changes in state. The delivat ion 
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Set hairline over 3.17 on LL3 and read its reciprocal 0.315 on LL/3. 
Slide left indcx of C under hairline and move hairline to 1.21 on C. Read 
0.317 on LL,'3. This is 0.315' 21. Set left, index of C to 120 on D and 
move hairline to 0.247 on C. Read 29.7 on D. 

Example 2. 
PI VZ Icor :L polytropic proccss, find n if - = 7.23 and - = 5.63. 
Pz VI 

Answer 1.145 

Solution : 
1' 
1'2 

From Tal)lc I writr, -2 = ($)nor 7.23 = 5.63" 

Set lcfl indox of C opposite 5.G3 on LL3. Move hairline to 7.23 on LL3 
and rwd  n = 1.145 on C. 

Alternate Solution : 

n:itural logaritlims. Write 
An altcrnaL(-, but muoh lcss rapid solution, may be obtained by using 

log, 7.23 = n log, 5.63 
or 

log, 7.23 n =  loge 5.63 
l h l  log,5.63 by setting hairline to 5.63 on LL3 and reading 1.73 on 
11. Firid log,. 7.23 by setting hairlinc to 7.23 on LL3 and reading 1.98 
on 11. Slide 1.73 on C undcr hairlinc and read 1.145 on D opposite 
left indcx of C. 

Tlic same rcsult could have becn ohtained using common logarithms 
and reading tticir values on the 1, scalc. Thus 

Example 3. 
Vz.  Tz 
VI TI 

For :L polytropic process find - if - = 0.94 and n = 1.037. 

Answer 5.30 

Solution : 

POWEItS OF NUMBISRS 65 

The simplest solution is to find the number which, when raised to the 

0.037 power will give --. Set hair line to 0.94 on LL/1 and read its 

reciprocal 1.0637 on LLl. Slide 0.037 on C under the hairlinc and read 
5.30 opposite left index of C on LL3. The choice of the correct LL 
scale on which to read the answer is governed by the position of the 
decimal point. In  this case, since the decimal point is in the sccond 
place to the left of 3.7, it is necessary to move upward two ~ ~ 1 ~ ~ s  to  the 
LL3, in order to obtain the correct result. 

1 
0.94 

0 

Alternate Solution (Preferred) : 

Opposite 0.94 on LL/1 set right index of C. Move hairline to 27 on C 
and read 5.30 on LL3. The first operation above was equivalent to 
setting the right index of C opposite 1.0637 (the reciprocal of 0.91) on 
D. The second operation raised 1.0637 to the 27 powcr. lZgain, tlie 
choice of LL scale on which the answer is read is determined by the 
position of the decimal point. In  this case, it is clear that tlie anGiver 
would not be on the LL2 scale because this would give l .lSl5, which 
would be the answer had the exponent been 2.7 instead of 27. 

Example 4. 

Solve example 3 if n = 1.37. Answer 1.1815 

Solution : 
The solution in this case is identical with that of example 3 except 

that the exponent by the first method becomes 0.37 instead of 0.037. 
By the second method it  becomes 2.7 instead of 27. The answcr is 
1.1815 instead of 5.30 and is read on LL2 instead of LL3. 

Example 6. 

Find the change in internal energy for air undergoing the following 
isentropic compression. P1 = 15 psia, Pz = 60 psia, T1 = 530 deg. R, 
w = 13 lbs, cv = 0.1715 btu/lb F, k = 1.40. 

Answer 564 btu. 



G(i NATURAL LOGS 

I Solution: 

Set h f t j  iritlcv o f  C opposite 4 on T,L3 and move hairline over 0.286 on 
C. 1tc:ul 1.486 on I A l 2  and subtract one from this, mentally obtaining 
O.JS(i. Sct  lrfl indo\: of C opposite 1160 on D and move hairline to 
0.4136 on C. l k a d  504 on D. 

EXERCISES 
Solve the following cxerciscs, using alternate methods when feasible. 

1GO. Ipintl T2 for an istmtropic process for which TI = 560, Pl = 14.7, 

161. Fintl l’, for an isentropic process for which PI = 15, Tl = 520, 

162. Fiid Pr for a polytropic process for which Pl = 400, TI = 625, 

1’2 = 4!).25, 1; = 1.40. 

1 2  = :%(io, I< = 1.80 r ,  

T2 = 500, n = 1.05. 
I’ V 163. Find n if 2 = 7.5 and -! = 4.4 
1’1 Vz 

164. Compritc. the heat, added to 1 lb. of air which undergoes a poly- 
tropic. cspmsion with n = 1.16 from a pressure of 200 psia to 
42 p i : i .  The initial temperature is 0 deg. R. For air c, = 0.1715 
litti, 11) F :ind IC = I .40. 

1G5. Find Vz for a polytropic compression of a gas if n = 1.24, TI = 600, 
TP = 800 and VI = 16. 

b. Equations Involving Natural Logarithms of Numbers. 
Most thcrrnodyn:imic equations involving logarithms can be reduced 

to onc nunilw multiplied by the n:ilural logarithm of another. The 
solution o f  this type of prol)lcm is quite simple, since the natural log 
of a nunihcr can be read directly on the D scale opposite the number 
on one of the LT, sca1t.s. If the number is greeter than one, the logarithm 
will be positive and will have the dccimal point indicated by the symbol 
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at the right of the scale. If the number is less than one, the logarithm 
will he negative with the decimal point also indicated by the symbol. 
The multiplication process which follows is one of simply setting the 
left or right index of the C scale (whichever is appropriate) opposite 
the vluae fo the logarithm on the D scale and moving the hairline to 
the number by which the logarithm is to be multiplied. The final result 
is read on the D scale and given the appropriate sign and dccimal point. 

In the interest of accurncy and ease of computation, it is often :in 
advantage to  reduce the problem to its simplest form hefore pc~form- 
ing the final operations. This will result in a miriiniurn of effort in 
obtaining the solution. Example 6 illustrates this point. 

Example 6 
Find the change in entropy per lb of gas resulting from a polytropic 

expansion for which n = 1.32 if Vz = GVI. Assume cv = 0.18 btii I t )  F, 
and lr = 1.39. Answer 0.0226 btu/deg. R. 

Solution : 
Without reducing to its simplest form, the solution coiilcl he found 

as follows: 

k - n s, - s1 = c,I0gp - - 1 - n  T, 

Set left index of C opposite 6 on LL3 and move hairline to 0.32 on 
C. Read 0.5635 on LL/2. This is equal to 8 raised to the 0.32 power. 
The logarithm of this is read under the hairline on the D scale, but 
wit,h a negative sign, since it is for a number less than one. 

From the symbol at the right of LL/2, i t  is clear that the logarithm 
read on D is -0.574. Set the right index of C under the hairline and 
move hairline t o  -0.0394 on C. Read 0.0226 on D. 

Alternate Solution : 

to the following, which is the preferred method. 
By further mathematical manipulation, the solution can be reduced 

& - St = -0.0394 log, (Q)”.” = -0.32 X 0.0391 log, Q = 0.0126 log, 6 
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Set left8 indox of C opposite 6 on LL3. Move hairline to 0.0126 on C 
and read 0.0226 on 11. 

Example 7. 
Find t h :  worlc of an isothermal expansion of 7 lbs of hydrogen gas 

from a volrimc of 500 f t s  to 10,OOO ft3. The temperature is 80 F (540 
deg. R.) Thc gns constant for hydrogen is 772. Answer 11250 btu 

Solution : 
Itcfcrring to 'l'ihle I and noting that P 2. = -- v2 one may write 

P2 VI 

Set 778 on C opposile 20 on T,I,B. Move hairline to 772 on C. Turn 
rule ovcr arid move 5-10 on CI unclcr hairline. Move hairline to 7 on 
CF and rc:d 11,250 on DF. 

Example 8. 
Find the change in cntropy for a constant prcssure proccss in which 

4 lbs of air arc compressed at constant pressure from a volume of 
50 ft3 to 10 it3. c, for air = 0.24 btu/lb F. Answer - 1.545 btu/deg. R. 

Solution : 
Noting from T:hlc I that - = - t  the following can be written Vz Tz 

VI TI 
1'2 10 Ss - SI = WC, log, - = 4 X 0.24 log, -- = - 4  X 0.24 log, 5 
T I  50 

Set 4 OIL CI opposite 5 on LL3. Move hairline to 0.24 on C and read 
- 1.545 on L). 

EXERCISES 

IGG. Find the change in entropy per Ib of air resulting from a poly- 
tropic cxpansion for which n = 1.12 if VZ = 18V1. Assume 
c, = 0.1715 and lc = 1.4. 

167. Find the work of isothermal compression of 10 lbs of nitrogen 
from a volume of 36 ft3 to a volume of 4 ft3. The temperature 
is GOF. Gas constant for nitrogcn = 55.2. 
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168. Find the heat added per lb of air undergoing an isothermal 
expansion from a pressure of 140 psia to 40 psia. The temperaturc 
is 600 deg.R. R = 53.3 

169. Find the change in entropy for a constant volume extraction of 
lo00 btu of heat from 15 lbs of oxygen originally at 7G0 deg.R. 
cv for Oxygen = 0.155. btu/lb F. 

170. For an isothermal compression the change in entropy of 3 Ibs of 
carbon dioxide is -0.37 btu/deg.R. If the initial pressure is 15 
psia, what is the final pressure? R for carbon dioxide is 35.1 
ft/deg.R. 

HEAT TRANSFER 

The mechanisms by which heat may be transferred are three, con- 
duction, convection, and radiation. In this section each of these will 
be treated separately for the case of steady flow. The case of transient 
flow requires a high degree of mathematical training and is beyond 
the scope of this chapter. 

a. Conduction 
Conduction may be defined as the flow of heat through a substance, 

the particles of which remain in a fixed position relative to each other. 
It is usually associated with the flow through solids although in the 
absence of convection currents heat can also be said to  flow by con- 
duction through liquids and gases. The flow of heat by conduction is 
directly proportional t o  a constant called the thermal conductivity 
multiplied by the temperature gradient and the cross sectional area 
perpendicular to flow, and inversely proportional to the distance through 
which i t  flows. 
For a slab the flow may be expressed by the simple equation; 

(1) 
kAAt &=-- 

7 

where 

Q = rate of flow of heat through the slab, btu/hr 
k = thermal conductivity of the slab material, btu/hr F f t  
A = cross sectional area of slab perpendicular to the flow of heat, ft2 

A t  = temperature difference across the slab, F 
T = thickness of slab, f t  



A prol)lem of frcquent occurrence in mechanical engineering is the 
determination of the flow of heat from an insulated pipe. For this case 
equation (1) must, be modified to conform to the fact that the insulation 
is c u r d  and that the area perpendicular to flow is greater at the 
outer surface. 
The equation for this case is: 

\vllcrc 

Q = lwat loss, I)tu/hr 
L = Icngth of pipe, f t  

ttic insulation, F 
At, = tcrnperaturc diffcrcnce bctwecn inner and outer surface of 

= outcr diameter of insulation, ft 
13, = inner dianictcr of insulation, ft 

Example 15. 

Find the h a t  loss in btu per hr from a pipe of 8 inches outside 
di:Lmcter if it is 50 ft long and covered with 2 inches of insulation 
Iiaving a thcrinal conductivity of 0.035 btu/hr F ft. The inner tem- 
pcraturc is 850 F arid the outer temperature is 150 F. Answer 18,950 
btu/hr 

Solution : 

From equation 2 write 

2~ X 0.035 X 50(850 - 150) Q = _ _  
12 log, -- 8 

Diviclc 12 by 8 mentally to obtain 1.5. Set hairline over 1.5 on LL2 
and read log, 1.5 = 0.406 on D. Subtract 150 from 850 mentally to 
obtain 700. Noting that 2 x 50 = 100, the problem reduces to n(o.oja x 70000) 

. Set hairline to 70,000 on D and move 0.406 on c 0.406 
under hairline. Move hairline to 0.035 on C and read 6030 on D. This 
may be multiplied by T by simple reading 18,930 on D F  under the 
hairline. 
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b. Convection 
Heat flow by convection is an extremely complex subject since 

the mechanism of transfer is largely one of heat being conveyed from 
one portion of a fluid to another by physical mixing. The interaction 
of forces creating mixing and the consequent transfer of heat depends 
on many factors such as the density, specific heat, viscosity. thermal 
conductivity, temperature, and velocity of the fluid, as well as upon 
the geometry of the apparatus in which the fluid is contained. Many 
cases of practical importance have been studied but perhaps the most 
useful to the mechanical engineer is the rate of flow of heat to or from a 
fluid flowing inside a pipe or circular conduit. This problem has been 
studied by Dittus and Boelter of the University of California. Their 
work indicates that  the rate of heat interchange between the inner 
surface of a pipe and a fluid flowing inside the pipe is proportional to a 
coefficient of conductance h. The rate of heat interchange in btu per 
hr may be computed by multiplying h by the inner surface area of the 
pipe and by  the temperature difference between the inner surface 
and the fluid. The value of h is given by the equation 

h = 0 . 0 2 3 - ( ~ ~ ' 8 ( ~ ) n  D k DVp 
(3) 

where 

h = coefficient of conductance, btu/hr F f t2  
K = thermal conductivity of the fluid, btu/hr F ft2 
D = inside diameter of pipe, f t  
V = mean velocity of fluid inside pipe, ft/hr 
p = density of fluid, lbs/ft3 
j~ = viscosity of fluid, lbs/hr f t  

c, = specific heat of the fluid at constant pressure, btu, Ib F 
n = an exponent equal to 0.4 if the fluid is being heated and 0.3 

if the fluid is being cooled. 

is a dimensionless group called Reynold's number 
DVI, 

The term ___ 

and occurs frequently in heat transfer and fluid flow calculations. 
It is sometimes very large and for this reason falls beyond the range 
of the LL3 scale on the slide rule making i t  necessary to apply special 

methods when raising it to a power. The term $! is called Prandtl's 

number. It is usually quite small; often less than unity. .hother group 

P 

P C  
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called Nusselt's number can be formed as -. The use of such dimen- 

sionlcss groups is widely employed in the theory of heat. transfer and 
fiiiid flow. These groups usually occur raised to some power thus making 
tlie slide rule particularly applicable to their solution. 

Example 16: 
Find the cocfficient of conductance of superheated steam flowing to 

a tiirbinc with a velocity of 150 ft/scc. The inside diameter of the pipe 
is G inchcs. The steam is under a pressure of 1,000 psia and a tempera- 
ture of 800 E'. The constants needed for the problem are k = 0.065 
btu/hr F ft, p = 1.451 lbs/ft3, p = 0.104 lbs/ft hr c, = 0.61 btu/lb F. 

Answer 3920 btu/hr F ft2. 
Solution : 

Since the steam is losing heat and therefore being cooled, the value 
of 11 will be 0.3. Hence, equation (3) becomes 

I hD 
k 

I 

I 

6 X 150 X 3600 X 1.451 '.' 0.104 X 0.61 
0.104 0.065 ) ( 

0 0 0 
The solution can best be obtained by treating the individual terms 
of the equation indicated by the encircled numbers separately. Then 
by the usual methods. 

h = 0.00299 X 45,200,0000~s X O.976Oe3 
0 0 0 

Sirice 45,200,000 is beyond the range of the LL3 scale, it  must be 
Ilivitled into pnrts for the operation of raising to the 0.8 power. The 
choice of division is not important so long as it is convenient and will 
xcomplish the desired result. The method which involves the least 
work is to find the square root of the number, raise this to  the 0.8 
po\vcr, and square. Thus 45,200,O0O0 X 67200.8 = 11502 = 
1,323,000. To perform this operation, move the hairline to  45,200,000 
on 13 and read its square root G720 on &. Set right index of C to 6720 
(111 LL3 and move hairline to 0.8 on C. Read 1150 on LL3. Set 1150 on 
1 : I  2nd read 1,323,000 011 D. To find 0.976°.3 set left index of C opposite 
().!I76 on LL/1 and move hairline to 0.3 on C. Turn rule over and read 
0 !)!ET5 on l,i,/O. Substituting these values into the equation for h gives 

= 67200 

ki = O.OOL'!I!) X 1,333,000 X 0.99275 = 3920 btu/hr F ft2 
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c. Badiation 
Heat may also be transferred from one surface to another by radiation. 

The mechanism of radiation differs from that of convection and con- 
duction inasmuch as the heat is transferred without benefit of any 
intervening substance. It is radiated just as light except that the wave 
lengths are usually much greater. The general relation expressing the 
interchange of heat between two surfaces may be expressed by the 
eauation. 

(4) 

where 
Q = heat transferred by radiation, btu/hr 

F A  = an angle factor which depends upon the geometry of the 

FE = an emissivity factor which depends upon the ability of the 

A = area of one of the surfaces, the choice of which depends upon 

TI = absolute temperature of the warmer surface, deg. R. = 460 + F 
Tz = absolute temperature of the cooler surface, deg. R. = 460 + F 

An illustrative example will serve to indicate the method of solution 
which will apply to problems of this type. 

surfaces and their relative positions, dimensionless 

surfaces to absorb and emit energy, dimensionless 

the method of evaluating FA, ft2. 

Example 16 : 
Find the heat transferred per square ft of surface of one of two 

parallel plates if the angle factor is unity and if the emissivity factor 
is 0.154. The temperature of the two surfaces are 400 F and 60 F respec- 
tivel y. Answer 126.5 btu,'llr ft2 

Solution : 
- - 460 q- 400)4 (460 + 60)4] - 

100 Q = 0.173 X 1 X 0.154 

1 0.02665 8.604 - 5.204 [ 
The values of 8.604 and 5.204 can be obtained by the use of the log log 
scales, by direct multiplication, or by the use of the R scales in con- 
junction with the C and D scales. The use of the log log scales is fast 
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b u t  is umdly not very accurate. The use of the R scales is probably 
just as cl i i ick and much more accurate. The use of direct multiplication 
is n o t  wcwrtimcndcd. 

Soliltion using thc LL scales: 
Set lcft indcx of C opposite 8.6 on LL3 and move hairline to 4 
on C. Rcsd 5500 on LL3. This is the value of 8.604. By similar 
riicthods, find 5.204 = 730. Then Q = 0.0265(5500 - 730) = 
O.fYYiC,5 X 4770 = 127.2 btu/hr ftz 

Solution using thc R scnlcs: 
Svt right index of C opposite 8.6 on Rz. Read 74 on D. This is 
S.(iO?. hIove hairline to 74 on C and read 5480 on D. This is 8.60'. 
Set lcft index of C opposite 5.20 on RZ and read 27.04 on D. Move 
hairline to 27.04 on C and read 731 on D. This is 5.204. Then 
Q = 0.02065(5480 - 731) = 0.02655 X 4749 = 126.5 btu/hr ft*. 

Thc laltcr soliltion is the more accurate of the two and to be preferred. 

d. Logarithmic Mean Temperature Difference 

Vnrious typcs of hcat exchanger equipment are frequently employed 
in mwlinnical cngincering applications. The most important of these 
arc surfacc condensers, feedwater heaters, refrigeration condensers and 
evaporators, and counter and parallel flow heat exchangers. Their 
primary purpose is to  transfer heat from one fluid to  another across a 
harrier such as a pipe wall or some other separating surface. If the 
over-all cocficicnt of heat transfer is known, i t  is possible to compute a 
logarithmic mean temperature difference between the two fluids that 
can be multiplied by the surface area separating the fluids, and by the 
over-a11 cocfticient, to obtain the rate of heat trwsfer. 

l'll1lS 

(2 = UAAtLM (5)  
where 

(2 = rate of flow of heat from one fluid to  the other, btu/hr 
U = ovcr-all cocfficient of heat transfer between the two fluids, 

At L B ~  = logarithmic mean temperature difference between the two 

' 

t)tu/hr I? ftz 

fluids, F. 
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EVAPORATOR SURFACE - II  
I" I t*  

(b)  Rejrigcration evaporators. 
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SURFACE - 
(c) Parallel flow heat exchangers. 

I 1 1 
SURFACE- 

(d )  Counter flow heat exchangers. 
Pig. 34-Temperaturesurface cum88 for fluids passing through various 
types of heat exchanger equipment. A t L M  = logarithmic mean temperature 

difference. 



The rchtion between the two fluid tcmperaturcs as a function of the 
surf:iw :LI’C:L for the v:wious types of heat exchanger equipment is 
illuhtmt c k t l  in Pigutv 31. ‘l’lic cquation expressing the logarithmic mean 
tcrnpcwtt I I ~ V  tliflcrcncc is the same in all casrs and is givcn by thc rclation 

wlrrrc 

o1 = tcmptut,urc tliflcrcnce between the two fluids at inlet as in- 

Os = t(w~pcr:~trirc~ tlilTcrence bctwccn the two fluids at outlet as in- 

For surf:ic.e coiidciiscrs, fccdwater hcatcrs, and refrigeration condensers 
and cvapor:itors, the fluid which is condencing or evaporating remains 
at a constarit tcmpcrature. Hcncc, only one of the fluids changes tem- 
perature as is clearly indicated in Figure 34, (a) and (b). Since equation 
( G )  Iiolds for a11 cascs, it is important in engineering work. Its use in 
conjritic-t ion with cquation (5) is illustrated by the three following 
cx:m plcs. 

Example 16: 
In :i large steam surface condenser 5,000,000 lbs/hr of circulating 

wntw are raised in tcmpcrature from GO F to 70 F. If the over-all 
cocfiicicnt, of licat transfer is 720 btu/hr F ft2 and if the condensing 
steam tcmpwiturc is 70 F, what will be the required surface area? The 
specific heat of the water may be taken as 1 btu/lb F. Answer 5190 f t 2  

Solution : 

tlic.:iktl in Figrirc 31, F. 

tlit*atctl in  Figure 34, F. 

Frorii ccliiations (5) and (6) 

Since the condensing steam temperature is constant, the value of 
Ffl - FI? will be equal to the rise in temperature of the water. Hence, 
Q = 5,tH)O,000 (0, - 0 2 ) .  Substitution of  this value into the above 
equation b’ rtvcs 

70 - GO 5,000,000 19 
720 l o g e 3  

log, --__- - - 5,000,000 
i\ = __-__ 

720 70 - 70 
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Set 9 on C opposite 19 on D and read 2.11 on D opposite right index of 
C. Move hairline over 2.11 on LL2 and slide 720 on C under hairline. 
Move hairline to 5,000,000 on C and read 5190 on D. 

Example 17: 

A feedwater heater raises the temperature of 216,OOO 11)s of water 
per hr from 92 F to 175 F. If the over-all coefficient of heat transfer is 
528 btu/hr F ft2 and if the surface area is 769 ft2, what will be the 
temperature of the condensing steam t.? 

Solution : 
From equations (5) and (6) 

e2 
Since the specific heat of water is unity, and since the condensing 
steam temperature is constant, Q = 216,000(81 - 0 2 ) .  Hence 

t, - 92 
t, - 175 216,000 

- 528 X 769 
= 1.88 - el log. - = log, e2 

t, - 92 
t, - 175 

- - 

The value of 
t o  obtain 6.55. Then 

may be read directly on LL3 opposite 1.8s on D 

t, - 92 6.55 X 175 - 92 
5.55 = 190 F. t, - 175 = 6.55 or t, = 

Example 18: 

A fluid having a specific heat of 0.65 btu/lb F flows through a counter 
flow heat exchanger a t  a rate of 520 lbs/hr. A second fluid having a 
specific heat of 0.72 btu/lb F flows through the exchanger a t  a rate of 
714 lbs/hr. (a) If the first fluid enters at 560 F and leaves at 318 F 
what will be the temperature of the leaving second fluid if it enters at 
194 P? (b) What will be the logarithmic mean temperature difference? 

Answer 3.53 F, 1CilF. 



Solution : I 
(A) ‘L‘ltc I i ca l  : ~ l w o ~ + ) c d  by the coolcr fluid must eqii:il that surrendered 

t)y 1 tic,  u : i r t i ~ o t ~  fluid.  Ilcmc(~, thc following hcat balance can be written 

520 X O.C,5(5C,O - 318) = 714 X 0.72(t, - 104) 
or 

520 X 0.M X 242 
71 1 x 0.72 

I? = - - ~  
~ - + 1!)2 = 159 + 194 = 353 F 

100 

I Opposito 207 on D sct 122 on C and read 1.696 opposite left index 
of (’. Stat hairline ovcr 1.GOG on I,L2 and read 0.529 on D. This is 

log~o’t’. $ ( s t  hait~liric~ ovcr 85 on D and move 0.529 on C under hairline. 

IZca(I I . ( i I  on I )  opposite lcft index of C. 
J “2 

EXERCISES 

1’71. Ftutl tlic. licat loss in btu/hr from a pipe 42.8 f t  long covered with 
iiiw1:ition I .5 inches thick having a thermal conductivity of 0.032 
1)Iu ’l ir  IC ft. The outside diameter of the insulation is 6 inches 
and the tc.mpcrature drop across the insulation is 227 F. 

172. Compiitc the coefficient of conductance of water flowing through 
:I rondcnscr if the tubes are $ inch inside diameter. The velocity 
of flow is 8 ft/sec. The physical constants are k = 0.35 btu/lb F 
f t ,  p = ( 2 . 3  1bs/ft3, p = 2.37 Ibs/ft hr, and c, = 1.00 btu/lb F. 

1’73. S_srvc.n hundred Ibs/hr of a fluid having a specific heat of 0.85 
btu / I t )  14’ arc p:isscti in a heat exchanger counter flow to 600 Ibs/hr 
of a fluid ltavitig :I spcdic hait of 0.!)4 btu/lb F. If the first fluid 
entcrs a t  500 F and leaves a t  2W F, what will be the leaving 
tempmitiire of the sccond fluid if it enters at 100 F? Compute 
thc logarilhmic mean temperature difference and the required 
area if  the over-all coefficient of heat transfer U = 473 btu/hr F f t2 .  
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174. A surface condenser having a surface area of 40,000 ft? circulates 
43,000,000 lbs of water per hr. The water increases in temperature 
from 70 F to 82 F. If the over-all coefficient of heat transfer 
U = 638 btu/hr F ft2 what will be the temperature of the con- 
densing steam? 

175. A bare steam pipe passes through a room whose walls are at  a 
temperature of 70 F. If the surface temperature of the pipe is 
325 F find the rate at which heat is lost to the walls per q u a r e  ft 
of pipe surface as a result of radiation. For this case assume 
FA = 1.00 and FZ = 0.90. 

MACHINE DESIGN 

I n  this section a few selected examples will be used to  illustrate 
typical problems encountered in machine design practice. The prob- 
lems are selected on the basis of their illustration of certain points 
regarding the operation of the slide rule rather than on frequency of 
occurrence. 

a. Rectangular and Polar Moments of Inertia, Radii of Gyration. 

An important problem in machine design is the calculation of the 
stress induced in beams and machine members by the application of 
bending moments and torsional forces. The methods required for the 
complete solution of these problems are beyond the scope of this chapter. 
However, an important item that often enters into the solution, and 
which must be computed, is the moment of inertia of the cross section 
of the beam or machine member. When taken about a horizontal asis 
lying in the plane of the cross sectional area, and passing through its 
center, one obtains the rectangular moment of inertia I. When taken 
about an axis passing through the center of the cross sectional area, 
but perpendicular to the plane of the area, one obtains the polar moment 
of inertia Ip. Also of importance is the radius of gyration. It is that 
radius which, when squared and multiplied by the cross sectional area, 
gives the moment of inertia. In  Table 11, formulas for cwmputing the 
two moments of inertia and their corresponding radii gyration for 
several widely employed cross sections are presented. A few examples 
of their solution, illustrating principally the use of the I< and R scales 
follow. 
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Example 19: 

Find the polar moment of inertia and polar radius of gyratiun of the 
rectangular cross section in Table I1 if h and b are 2.22 and 1.50 inches 
respectively. Answer 1.99 in4, 0.774 in 

Solution : 

Write the polar moment of inertia as 

I, = 
12 = E[ 12 1 + ($'I = 12 1 +  (2.22)"] 1.50 

1.505 X 2.22[ bh(b2 + h2) 

Opposite 2.22 on D set 1.50 on C. Opposite left index of C read 1.48 

on D. Move hairline to 1.48 on C and read 2.19 on D. This is . 
Add one to 2.19 mentally obtaining 3.19 and set hairline over 3.19 on 
D. Move slide so that 12 on C rests under hairline and then move 
hairline to 2.22 on C and read 0.59 on D. Find 1.503 by setting hairline 
to 1.5 on D and reading 3.375 on K. Set right index of C opposite 0.59 
on D. Move hairline to 3.375 on C and read the answer 1.91) on D. 

l.jo (2.27 

Write the polar radius of gyration as 

2.22 
By the same methods as above find 1 +(m) = 3.19. Set hairline 

opposite 3.19 on D. Move 12 on C under hairiine and move hairiine 
over left index of C. Read 0.5155 on Rz. Set left index of C to 0.5155 
on D and move hairline to 1.5 0n.C. Read the answer 0.774 on D. As a 
check RP2 x bh = I,. Hence, 0.774* X 2.22 X 1.50 = 1.99. 

Example 20: 

Find the rectangular radius of gyration of the hollow rectangular 

Answer 1.50 in2 
section if B, H, b and h are 3.2, 4.6, 1.8 and 2.6 respectively. 
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Solution : 
Poi. this pro thn  it is easiest to solve for each member undcr the 

r :di(d wpai~aicly using t h  11 scales in conjunction \vi th the CI and 
11 sc:Ll(5. ‘rhus 
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To pwform the :il)ovc operations, set hairline opposite 4.6 on Rz and 
rcad SI. I t i  on D. ‘I’his is 4.V. Slide 4.6 on CI under hairline and then 
niovc h:iirlinc to 3.2 on C. Itcad 312 on D. 

bli‘ = 1.8 X 2.6 X 2.6’ = 31.65 

Set h:iirline over 2.(j on Itl and mad 6.76 on D. This is 2.@. Slide 2.6 
on Cl untlrr hairline and niove hairline to 1.8 on C to obtain 31.65 on 
I). T I E  dcnorninator under the radical is found in the usual manner. 

12(BII - bh) = 12(3.2 X 4.6 - 1.8 X 2.6) =12(14.72 - 4.68) = 124.8 

then 

Set 12 1.S on C opposik 280.35 on L). Move hairline to left index of C 
a d  ~c:ul 1.50 on I{ , .  

Example 21: 

give a reclangular moment of inertia equal to 0.584 in4. 

Solution : 

Fintl t . l i c  width of : ~ r i  elliptical scction of height 2.9 inches which will 
Answer 1.60 in 

Set T on C oppositc (i4 on D. Move hairline to 2.9 on CI and slide 
0.584 011 CI rindcr hairlinc. Opposite left index of C read 4.1 on D. 
Set hnirliiie owr 4.1 on K and read 4 4 7  = 1.60 on D. 

b. Belt Length and Tension 
The use of the S s d e  together with certain other manipulations 

may 1)c illustr:ited by the equations for belt length and belt tension. 

Figure 35 is an illustration of two pulleys over which an open belt 
is stretched. 

1 

-c------l 
Fig. 36-Pulleys with Open Belt. 

The equation for length of belt required is 

(7) -k + (D - d) sin-’--- D - d  
2c L = , /4cz - (D - d)’ +“(‘i“) 

D - d  
where sin-’ 2 ~ ‘  must be in radians and 

L = belt length, in 
D = diameter of larger pulley, in 
d = diameter of smaller pulley, in 
C = distance between pulley centers, in 

The angle of contact between belt and smaller pulley is given by the 
expression 

(8) 
D - d  ao = 180 - 2 sin-’ - 

2c 
0 
a 

Expressed in radians (Y = - radians. 57.3 

The tension developed by the tight side of the belt in terms of that 
on the loose side is 

TI = T2efla (9) 
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In eqri:ition (9) 

TI = tension on tight side, Ibs 
7'2 = tcnsion on loose side, Ibs 

p = coefficient o f  friction between belt and pulley 
a = niiglc of c*ont:wt. htween belt and smaller pulley, radians 

l'hc drrciive torque for producing power will be (TI - T2) - inch Ibs 
so titat tlic horscpomcr dcvcloped will be 

d 
2 

hp = 2sN(Ti - Tz)tl - Nd(Ti - T2) - 
12 x 33,000 x 2 126,000 

whcrc 

N = rcvolutions prr minute of thc smnllcr pulley 
d = diamctcr of the smaller pulley, in 

Example 22: 

(a) Compute the rcquired length of an open belt to stretch between 
two pullc~ys (io inches apart if their diameters are 22 and 8 inches. 
(b) Computc the anglc of contact of the belt on the smaller pulley 
in dcgrws :mtl in radians. (c) If the belt is to transmit 20 hp and if 
tlic smullrr pulley is to operate a t  800 rpm, what will be the tension 
on thc tight and loose sides of the belt. Assume p = 0.30. 

Answer 168 in, 1GG.G deg., 2.91 radians, 676 lbs, 282 Ibs 
Solution: 

this may easily be rcduc:ed to the following 

L = 14 4(%)2 - 1 + T X 15 4- 14 sin-' 120 14 

0 0 8 
@ Set 14 on C opposite 120 on D and read 8.57 on D opposite right 
index of C. Move hairline to 8.57 on C and read 73.5 on D. This is 

(Zy. Subtract one from this mcntally to obtain 72.5. Set hairline ' 

over 72.5 on D and read 8.51 on R2. Set right index of C opposite 8.52 
on I> and move hairline to  14 on C. Read 119.2 on D. This is the value 
of the first term. 

THE MOVING PISTON 85 

@ Set hairline to 15 on D and read ?r x 15 = 47.1 on DF. 
8 Divide 14 by 120 and obtain 0.1167. Set hairline to 0.1167 on C 

and read 6.70 degrees on S. This is sin-' 120 in degrees. T o  find the 

number of radians set hairline to 6.70 on D and slide 57.3 (marked R 
on C scale) to hairline. Read 0.117 on D opposite left indes of C .  Mul- 
tiply by 14 by moving hairline to 14 on C. Read 1.G4 on D. This is 
the third term. Adding the three terms gives 

14 

L = 119.2 + 47.1 + 1.64 = 167.94 168 in. 

(b) The angle of contact will be 
D - d  14 

ao = 180 - 2 sin-' ___ = 180 - 2 sin-' - = 180 - 2 X 6.70 2c 120 
= 166.6 dt.g. 

Set hairline to 166.6 on D and move 57.3 (R on C scale) to hairline. 
Read cy = 2.91 radians on D opposite right index of C. 

(c) From equation (10) the difference in belt tensions can be computed 
126,000 hp - 126,000 X 20 

= 394 Ibs - 
800 X 8 Nd TI - Tz = 

also 
T_! = p a  = e0.30X2.91 = e .  0873 

T2 

Set hairline to 0.873 on D and read = 2.393 on LL2. Then 

Ti = 2.3931'2 = 2.393(T1 - 394) 
or 

and 
Tz = 676 - 394 = 282 Ibs 

c. Displacement and Velocity' of the Piston of a Reciprocating 
Engine 

I n  Figure 36 is represented a crank and connecting rod similar to 
that employed on reciprocating engines for the conversion of rectilinear 
motion to rotary motion. With this mechanism two important problems 
arise. These are the determination of piston displacement and piston 
velocity as a function of crank angle 8. The two quantities may be 
expressed by the equations: 
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whcre 

S = piston displacement, f t  or inches 
1 = Icngth of piston rod, same units as S 
r = radius of crank, same units as S 
8 = crank angle, degrees 
v = piston velocity, ft/min or in/min depending on units 

N = revolutions per minute 
for 1 and r 

Equations (I 1) and (12) may be solved with a high degree of accuracy 
by including the last tcrm, but in general this may be neglected. 

Example 23: 
(:I) Find the piston displacement in inches and piston velocity in 

ft/min for an internal combustion engine operating a t  3000 rpm if 
e = (is degrtm, 1 = 8 in, and r = 3 in. (b) Solve the same problem, 
neglecting the last tcrm, if 8 = 185 degrees. 
Answer 2.38 in, 4950 ft/min, 5.99 in, - 252 ftimin. 

Solution : 
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Using the S scale in conjunction with the C scale both the sin and cos 
of 68" are found to be 0.934 and 0.3715 respectively. The remaining 
steps are simple and need not be explained in detail. 

S = 3[1 - 0.3745 4- % X 0.9342 + + ($)3 X 0.93J4J 

= 3[1 - 0.3745 + 0.1636 + 0.004061 = 2.38 in. 

V = 4615[0.934 + $ X 0.934 X 0.3745 + $ X (3)3 X O.DRJ3 X O.;<i13J 

= 4615[0.934 + 0.1312 + 0.008051 = 4950 ft/min. 

(b) 
Since sin 185" = -sin 5" and since cos 185' = -cos 5' one may find 

from the ST and S scales in conjunction with the C scale the follotving: 

Sin 185" = -sin 5" = -0.0871 (from ST scale) 
COS 185" = -COS 5" = -0.996 (from S scale) 

then 

S = 3[1 + 0.996 + 4 X Q X 0.0871?] = 5.99 in. 
V = 4615[-0.0871 + 8 X 0.0871 X 0.9961 = -2_332ft/min. 

The negative sign for velocity in this case simply means that the 
piston in Figure 1 is traveling form right to left. 

EXERCJSES 
176. Compute the rectangular moment of inertia and rectangular radius 

of gyration of a circular annulus if D = 4.5 in and d = 3.21 in. 
Check moment of inertia by using radius of gyration and area. 

177. Compute the polar moment of inertia and polar radius of gyration 
of the hollow rectangular cross section if B = 4.3, H = 6.4, 
b = 2.7 and h = 4.8. Check moment of inertia using radius of 
gyration and area. 

178. Find the length of belt required for two pulleys 72 inches apart 
if one pulley is 48 inches in diameter and the other is 8 inches 
in diameter. 

179. Find the angle of contact for the smaller pulley in problem 178 
both in degrees and in radians. If the pulley is to transmit 15 hp 
at 800 rpm what will be the tension on the two sides of the belt 
assuming ,u = 0.20 
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180. Find the piston displacement and velocity for a steam engine 
opcrating at 150 rpm if 0 = 80 degrees, 1 = 3 ft and r = 0.75 ft. 
S d i e  the ~iiinc problcm for 0 = 12 degrees. Chapter 9 

A P P L I C A T I O N S  T O  E L E C T R I C A L  E N G I N E E R I N G  
by B. A. FISHER, B.S., M.S., E.E. 

Purpose. The purpose of this chapter is to present a few of the 
situations in which the Frederick Post Versalog slide rule offers unusual 
advantages to the Electrical Engineer, and in certain cases to describe 
the methods to be used in order that  the maximum of advantage may 
be realized. Detailed attention will be given to the uses of the trig- 
onometric scales. It is in that area that the Electrical Engineer will 
find his greatest satisfaction with this slide rule but the bcnefits can 
be realized only if proper operational procedures are mastered. -1 small 
investment in time spent at the outset in learning such procedures 
will pay off handsomely in the long run. 

THE C AND D SCALES 

I n  Electrical Engineering as in other fields, the bulk of the every 
day routine work is done with the C and D scales. I t  is worth while to 
devote considerable attention t o  the procedures outlined in the earlier 
chapters of this manual for their most economical use, including com- 
bined operations with the 9-folded C and D scales. Facility in handling 
proportions is also of great value in Electrical Engineering. Illustra- 
tions follow. 

Use of Proportion Methods in Problems of Resistance Changes 
Resulting from Temperature Changes. Resistances of metallic 
conductors increase with increasing temperature. The formula represent- 
ing this change is most conveniently expressed as a proportion, as 
follows : 

where Rz is resistance a t  centigrade temperature and R1 is resistance 
at tl. The constant 234.5 is suitable for “standard annealed copper.” 
Other constants are required for other materials. The slide rule C and 
D scales are very convenient for the solution of any proportion. 

89 



Example: The fichld winding of a motor has 56 ohms resistance at 
an aml)icbnt trinprrature of 25" C. After full load operation for two 
hours the rchistmce is foontl to be 74.3 ohms. What average temperature 
\V:M rc:ic4wtl by thc winding? 

Solution : 
74.3 234.5 + t z  - 
56 259.5 

'l%v 4 i t l r  rule is used to find 234.5 + t z .  The procedure using pro- 
1)ot.t I O I I  i.: lo Ibring 7-13 on the C scde in register with 56 on tlle D 
SC:LIP. ' I ' l i c ~ ~  set the hairline to 2595 on D and read 234.5 + tz = 341.5 
0 t h  C ' .  I . ?  = 34f.5 - 231.5 = 110°C. 

Any otic of the four quantities R2, R,, t z ,  or tl may, of course, be 
tlic rinl~riown. 

For slid(> riilc users who have continually to make this type of calcu- 
lation, it is recommended that auxiliary scales be etched on the slide 
rule adjnccnt to the C and D scales as follows: 

At 21 k.5 on C and D, put a mark and label it -20'; at 234.5, another 
mark 1al)c~lcd 0"; a t  254.5, a mark labeled 20°C; and on up every 20' 
to teinpcmturcs as high as required. With such auxiliary scales it 
bcconics possilh to make the calculation direct in centigrade degrees 
without thc irksome requirement of adding and subtracting 234.5. 

For niatcv%ds otllrr than standard annealed copper, the constant 
284.5 must be rcplaccd as follows: 

IIard drawn copper 242 
Commercial aluminum 236.5 
Silver 243 
Platinum 313 
Nickel 230 
Mercury 236.5 
Tungsten 202 

EXERCISES 

181. A 100 watt tungsten filament lamp operating at 2,200' C has a 
resistance of 132 ohms. What is its resistance just after switching 
on, bcfore the temperature has had a chance to rise above room 
temperature of 20" C? 

I 

CONDUCTORS, COPPER LOSSES $11 

182. The "cold," (30' C), resistance of an armature winding of copper 
is 0.0345 ohms. If, under full load operation, the temperature is 
expected to rise 50°, what is the expected operating resistance? 

Use of T-Folded Scales for Circular-Mil Areas of Rectangular 
Conductors. The cross-sectional area expressed in circular-mils of a 
rectangular conductor is found as follows: 

4 a b  
Area = 7 circular mils, where a and b are the crobs-sxtion dimen- 

sions in mils. 

Example : A rectangular rotorconductor in an induction motor 
has a cross section 2 inch by 3 inch. Find the cross section in circular mils. 

= 159,100 circular mils. 
4 X 250 X 500 

Area = 
?r 

Here the important thing is to make economical use of the a-folded 
scales. In  this case i t  is only necessary, after noting that 4 X 250 = 1000, 
to set the hairline to 5 on the DF scale and read 1591 on D under the 
hairline. 

EXERCISE 
183. What is the cross section in circular mils of a bus bar 0.23 inches 

thick and 3.5 inches wide? 

THE R SCALES 

The square root scales are of particular value to  the Electrical 
Engineer. Examples of their uses follow: 

the Resistance Are Known. 
Copper Loss in Wires and Machines when the Current and 

Example: For a current of 120 amperes in a resistance of 0.076 
ohms, to find the power dissipated using P = P R :  Set hairline to 120 
on R; place 76 on CI under hairline; read result on D under left index 
of slide, P = 1094 watts. 

Copper Loss in Wires and Machines when the Potential Drop 
and the Resistance Are Known. 
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Example: For a voltage drop of 9.11 volts in a resistance of 0.076 
ohms, to Gntl bhc powcr dissipated using P = E2/R: Set hairline to 911 
on I < ;  sct 7G on C under linirline; r e d  result on D under left index of 
slide, I’ = 10!)2 wat,ts. 

Notc that in these operations greater accuracy is possible than with 
slide ru1c.s cmploying thc conventional “A” and “B” scales; and setting 
of the drcimal point is simplificd. 

Calculations Relating to Circuits Possessing Resonant 
Qualities. It is frequently necessary to evaluate d z  d m  and 
v‘L7, whcrc L and C arc inductance and capacitance (sometimes per 
unit Icngth of circuit). Here the quantity under the radical is evaluated 
hy thcx usual mcthotls using the C and D scales. A final setting of the 
hairlinc transfers this quantity to the R scale where the square root 
is read. 

The slidc rule settings concerned require no illustration a t  this stage 
of thc instruction but bccause of the orders of magnitudes usually 
involvrd, tfie decimal point must be located with care. 

Example: L = 150 microhenries. C = 80 micro-micro-farads. To 
find ~/LC 
dE = d i . 5  x 10-4 x 0.8 x 10-10 = 4 1 . 2  x 10-14 = 1.095 x 10-7 

I t  is to be noted that even powers of ten were factored from the 
numbers in order to bring the decimal points close to the first digit 
and to facilitatc taking mentally the square root of the power of ten. 

Root-mean-square Value of Non-sinusoidal Current or Volt- 
age. Whcn the r.m.s. values of the harmonic components are known, 
the r.rn.s. value of the non-sinusoidal function may be found from 

E = dE2, + EZ2 + E23 + etc. 

IIcre the R scale may be used with the D scale. Full advantage is 
gained from the supcrior accuracy of this slide rule over those having 
A and B scnlcs. 

Power Factor for Phase Angles Less than 10 Degrees. We may 
use the approximation 

XZ 
cosx = 1 - - 2 
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Cosine scales on slide rules are so condensed below 10 degrees as 
to render accurate interpolation difficult. When a cosine in this range 
must be known accurately, as is often the case in power factor problems, 
the approximation given above may be used to advantage. 

x is the phase angle in radians. The upper limit a t  whidi this appros- 
imation should be applied is 10’ = 0.1745 radians. Let us calculate 
cos (0.1745 radians) according to the approximation anti curnixire the 
result with a five-place table. The error made will be tlic miximum: 
since for smaller values of x the method becomes more accurate. 

x = 0.1745 radians. 
x2 = 0.03045 radians, using the R scale in the usual way with 

the D scale. 
x2/2 = 0.01523. 
1 - x2/2 = 0.98477 = cos 10” approximately. 

From a five place table cos 10” = 0.98481. The difference is O.OOOO4. 

Circular-mil Areas of Round Conductors. Area = D? circular 
mils where D is diameter of wire in mils. 

Example: A micrometer caliper shows the diameter of a round 
wire to  be 0.1019 inches. Find the area in circular mils. 

Area = 101.g2 = 10,380 circular mils. 

This calculation is made with the help of the R scale in the usual way. 

EXERCISES 

184. The potential drop across a load is indicated by a voltmeter 
reading to  be 232 volts. The voltmeter resistance is 30,000 ohms, 
as is the resistance of the potential coil of the wattmeter. What 
“potential coil loss” error must be subtracted from the watt- 
meter reading? 

185. Calculate the copper loss in a field winding of 57 ohms resistance 
if the current is 0.89 amperes. 

186. Determine the surge impedance of a radio-frequency transmission 
line whose inductance per foot of line is L = 301,500 micro-micro- 
henries and whose capacitance per foot is C = 3.385 micro- 
micro-farads. (Z, = m) 
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157. Wlrat capacitance C in micro-micro-farads is required to tune a 
200 micro-henry coil to a frequency of one million cycles per 
xwrid? 

c=-) 1 ( (2af)2L 

185. A1r:isarcrncnts with a “wavc nnalyzcr” on a nonsinusoidal voltage 
u :L\ c intliva(c I l i e  following components to be present: E1 = 287, 
IC2 = 57, 15, = 2‘2, lC4 = 0, E5 = 0, E6 = 0, E, = 2, all being 
root-inc.ari-sclrr:ire voltages. Find the root-mean-square value of 
ttic \\3\’C. 

18!). I4iitl (’os I .W tlcgrccs. 

190. E’ititl tlrr c.ircul:w-mil area of a stranded wire made of 7 strands 
of c i i w t l : r r  conductor, each strand having a diameter of 0.0808 
inrlics. 

THE L SCALE 

The 1, scale is uscfiil for calculation of logarithmic power ratios in 
terms of tlccibcls by either of the formulae: 

d.b. = 10 loglo- PZ or d.b. = 20 loglo- v2 
PI v1 

PZ Example: Lct p- = 400. Set the hairline to 460 on D. Read the 

mantisu:r cJf loglu 460 under the hairlinc on L, obtaining 0.663. Mentally 
dt.tcriniric1 t h c i  c.haractci.istic of Ihe 1og:rrithm and add it to the mantissa, 
thus: 2 Mi;<. ‘l’licn d.b. = 26.63. If data from the same physical situa- 

tion 1i:~t l  t)wn in tcrms of voltage ratio, this would have been - = 21.45. 

I’rorccJiiig as before, loglo 21.45 = 1.3315 or d.b. = 26.03 
Somct iriws it, is ncccssary to calculate the power ratio corresponding 

to a k n o ~  11 rruinbcr of tlccibels change in power level. This relationship 
is esprcsscd by tlie equation 

1 

vz 
VI 

-1 I . 
P2 - = L o g  P1 IC (g) 

PZ Example: d.b. = 26.63. d.b./lO = 2.663 = loglo--. Set hairline to 
Pl 

GG3 on L. Iiead undcr the hairline on D the digits 460 representing 
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Pz/Pl. The decimal point is placed after the third digit because the 
characteristic of the logarithm 2.663 is 2. 

If voltage ratio is desired from the above data, 5 = 42 = 

&% = 21.45 may be obtained from the D and R scales in the usual 
way. 

- 

VI 

EXERCISES 
191. I n  carrier-frequency telephone repeater input circuits one-half of 

the received power is lost in a line-matching resistor. Kha t  is 
the d.b. power loss in this case? 

192. I n  a radio frequency amplifier the input voltage is 0.2 volts. The 
output voltage is 45 volts. Find the d.b. voltage gain. 

193. A 600 ohm low pass filter designed to “cut off” a t  2,000 cycles 
per second accepts 6 microwatts power at this frequency, whereas 
a termination of 600 ohms would accept 1 milliwatt. What loss 
in d.b. is introduced by the filter, at this frequency? 

THE LL SCALES 
The unique log-log scales of the Post Versalog slide rule are of great 

value in a variety of electrical problems. These scales have an arrange- 
ment and coverage that make them unsurpassed for the follou-ing 
calculations: 

Exponential Decay Terms in the Solution of Transient 
Problems. These terms take the form e-kt where the function must be 
evaluated for a series of values of the time t. The exponent kt is first 
determined for different values of the time t. The hairline is then suc- 
cessively set to the values of k t  on the D scale and the corresponding 
results for e-kt read from the appropriate level of the reciprocal log log 
scales as determined from the right end zone symbols. 

Examples : 
kt e-kt 

0.008 on D gives 0.9920 on LL/O 
0.08 on D gives 0.9231 on LL/1 
0.8 on D gives 0.4495 on LL/2 
8.0 on D gives 0.00034 on LL/3 
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N o k  1lt:tt witli this slitle inle the exponential term may be found 
\vit.lt guo(l :iwiiracy from 0.!)!)9 down to 0.0000454, for values of the 
csportcw t. from 0.00 I to  10.0. Fur tinies o i i  the: ti-:in,l;ient onrlier than 
kt. = 0 . 0 O I  it is possil)le with a maximiim error of al)out 5 parts in one 
million to IISV tbe LI,/O scale for the range kt = 0.001 to 0.0001. This 
is c l o i t c  I)y :Lssiiniing :inothcr 9 to he inserted bet,ween the decimal point 
and t lw  i i i t m ~ ? r d s  in t h  numl)ering of the L L / O  scale. 

i 
I 

I .  1 lit is:  = 0.9!)020. Similarly, 
(>-.OO(X)R = 0.!)!)!)920, etc. 

Two digits 1)eyontl the !)’s will be accurate. 

r .  I h i i s  h r c  is no litnit, to re-cycling on the LL/4 scale toward unity. 

Hysteresis Loss in  Iron. The loss is expressed as 

PI, = Iil,f I%:, where 
PI, = lrystwcsis loss in watts per pound of iron; 
ICl, = :L cocflicicnt; 

13,,, = m:iximum flux density in kilo-lines per 
f = frcyucncy in cycles per second; 

sqriarc inch; 
s = tlio “Steinmctz exponent.” 

Example: PI, = 0.6, IC,, = 1.2 X B, = 65, f = 60. Find x: 
0.6 = 1.2 x 10-5 x GO x 6 5 ~ .  
( i 5 X  = 833. 

,, i lie qiicst,ion is, to \vti:d power must G5 be raised to give 833? Set the 
liairlinc to 6 5  on 1,1,3; left intiex of C to hairline; move hairline to 
S33 on L1,3; read s = 1.01 under hairline on C. 

Ttic iit\wsc: of  t,liis problem arises when P h  is unltnown and x is 
I a o \ v i t .  A s  :ti1 iilrist,rat,ion, suppose x = 1.61, B,, = 70, and other data 
a s  i r i  tltc prcvious cxnrnple. Find Pr,. 

I ) ~ ,  = 1.2 x 10-5 x 60 x 701.61 

ICvdll:Lt(: 70”“ = 937 5s follows: 
Set 1i:iirlinc to 70 on LL3; set left index of C to hairline; move hairline 

PI, = 1.2 x 10F X (io X 037 = 0.675 watts per pound at 60 cycles. 

Emission of Electrons from Cathodes. Cnlculations in this field 
frcqricntly rcquire mising a number to a power. The exponent is 

to 1.61 or. C ;  rcad 937 under hairline on T,T,3. Then 
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frequently 1.5 or 4.0. Since the method of solution is the same as that 
given under the heading Hysteresis Loss in Iron, details will not be 
repeated. 

EXERCISES 
194. A 3 micro-farad capacitor charges through an 800.000 ohm resistor 

from a 400 volt source. Find the current at t = 2.4 seconds. 

E 
R (Formula: i = -e--t/RC) 

195. Repeat the previous exercise when t = 4.8 seconds. 

196. Repeat for t = 0.048 seconds. 

197. An iron core has a hysteresis loss of 0.5 watts per pound at 60 
cycles and B, = 65. x is known to be 1.6. Find &. 

198. The plate current in a certain vacuum tube follows the law: 
I = 1.2 x If the voltage E is 200, find I. 

THE TRIGONOMETRIC SCALES 

The Post Versalog slide rule includes trigonometric scales which 
have been designed with especial attention to the needs of the Electrical 
Engineer. In the past considerable resistance to the use of so-called 
“vector scales” has existed on the part of students of Electrical En- 
gineering, and even among instructors in this field. With alide rules 
existing prior to the Post Versalog rule, this resistance was well founded 
because there was no simple way to keep track of basic operations of 
multiplication and division by sin 0, cos 0, and tan 8. So much care 
was required to avoid operational errors due to misuse of the scales 
that the many advantages possible with properly designed trigonometric 
scales were greatly reduced. 

Any user of this slide rule who has mastered the use of the C and CI 
scales for multiplication and division can multiply and divide by sin 8. 
cos e, or tan 8 with the same assurance he feels in using the C and 
CI scales. Only one simple rule has to be observed: If a trigonometric 
scale is black, use it as you would a C scale; if red, use it as you would a 
CI scale. Electrical Engineers will find that their Post Versalog slide 
rules permit solution of alternating current problems with a freedom 
from operational errors not possible with other slide rules. 



'l'lic iiori-spcc.inlizct1 uses of the trigonometric scales have been treated 
m w l i w e  i n  this miiiiud. 'l'hc reader should, before proceeding, review 
t i l t .  tlcxrip( i o n h  arid fiinti:mcntaI uses of the trigonometric scales there 
gtvc'tl. 

I t  is :ig:iin argrd tliat the slide rulc user cultivate the habit of think- 
ing o f  t l i c  four b l d i  trigonomctric scales ns though they were in fact 
C: sc:~Iw, :ml o f  thc two rcd trigonometric scales as though they were 
ir i  fart (:I scales. Suc.11 is indccd the fundamental nature of these scales, 
a sirnpl(1 f:ic.t wliic.11 makcs thcir uscs quite as simple as those of the C 
and CI w : i l c s .  An eximplc will illustrate this point. 

Example: A load of  4,MH) kilowatts draws current a t  a lag angle of 
23 t l(~yws. (a) Find tlic number of kilovolt-amperes. (b) Find the 
rcac.tivc powcr tlrawn from the line. 

Solution : 

I l crc~  cos 0 is O.!)O(i :is may be verified by setting the hairline to 25" 
on t h v  ('os hcalc and rcncling O.'3O(i on C.  It is unnecessary to take the 
additional h t q )  of evduating cos 8, and then dividing 4,000 by 0.906. 
Instc:itl, t1w hairline is sct to 4,000 on D, the slide moved to bring 25" 
on tlic Cos scalc untlcr thc hairline, and the result is read on D under 
thc rigltl intlcs of C. Notc that the sctting used is exactly the same as 

tli:it iisctl it1 evaluating '!&?!?) with the C scale. Thus, the division was 

pcrfor~ncd ~ I J '  ubing tlic Cos scalc as though it were a C scale. 
O.OO(i 

(b) livar = (liw) tan 8 = 4,000 tan 25" = 1,865 

Tan 25" = 0 . 4 G G ,  which may he vcrified by sctting the hairline to  
23" on 'I' (I~lnc.li) wading 0.4GG on C. This stcp is unnecessary. 
Inste:icl, svt riglit index of 1' (black) to 4,000 on D and set hairline over 
25" on '1' ( i h c k ) .  l tcd 1,865 on D undcr hairline. Here the (black) 
t:ttigtwt scat(> 11:~s bccn used as though it were a C scale to perform a 
m i i l l  iplicxt 1011. Part (I))  could have bcen solved another way: 

kvar  = (Iiva) sin 0 = 4,415 sin 25" = 1,865 
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Here the S scale has been used like a C scale, for multiplication. 
Another example will further illustrate the complete consistency 

possible in viewing the trigonometric scales as equivalent to C or CI 
scales. 

Example: During a zero power factor test on an alternator, a phase 
angle of 89" was actually attained. The power delivered by the macshine 
was 520 kw when operated at rated current and voltage. Find (a )  the 
rated kva and (b) the reactive ltva drawn during the test. 

Solution : 

=-= 520 520 sec 89" = 29,800. kw (a) kva = - cos e cos 89" 
In this solution the slide rule operator observes that his cosine scale 

ends a t  84.27". He finds instead a scale Sec T (red) covering this region. 
In place of dividing by cos 89", he multiplies by sec 89", since 1 ,'cos 8 = 
sec e. It is interesting to note that the settings employed are identical 
with the settings which would be required t o  divide by cos 89' had the 
secant scale been made black and called "cosine." This scale is made red 
and called "secant" in the design of the slide rule because it is desirable 
to utilize the same scale for tangents. The tangent and the secant are 
nearly equal in this range, and the tangent scale requires the red color. 

(b) kvars = (kw) tan e = 520 tan 89" = 29,800 

Here it is observed that the same setting is used as in (a), since for 
angles near 90" tan e is approximately equal to sec 0. 

THEORY AND PROCEDURES 

In Electrical Engineering the principal applications will be in the 
solution of alternating current problems where it is necessary to make 
frequent conversions between the polar and the rectangular forms of the 
phasor (often but improperly called vector) quantities. In Electrical 
Engineering, these quantities are symbolized in the folloming two forms : 

Polar Form Rectangular Form 
A l e  = a +  jb (1) 

The angle 8 may have any value from zero to  360 degrees and quite 
frequently is close to zero degrees or to  90 degrees: The process of con- 
version from polar to  rectangular form will be discussed first. 
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I. Polar Phasor to Rectangular Phasor. 
For purposrs of illristr:ttion. let the. phasnr lw an impedance 

Z l 8  = R + jX 

Where: Z is m:rgnitudc in ohms; 
8 is phase angle in degrees; 
R is resistanre in ohms; 
j is 47, callcd in mathematics i; 
X is reactance in ohms. 

Thc? prolhm is: given Z :md 0, to find R and X. The relations are 

C; rap11 icdly : 

Analytically: 

Z ( S  - = Z cos 6 + j Z  sin 8 (3) X 

The sohilion takes the form: ..:...I R Fig. 37. R = Z cos 0 X = Z sin 0 (4) 

wliic.h for convmicnce is usually applied in one of thc following equiva- 
lcmt forms: 

I1 = X/tan 8 X = Z sin 8 (5 )  
R = Z c o s 0  X = R t a n 6  (6) 

Equation (4), while simple to visualize, requires additional labor 
under certain circumstances. Equations (5) and (6) cover all situations 
with eclu:il economy of eBort. 

Ecluations ( 5 )  and (6) suggest the following rules: 
(A) Whcn 0 < 45", use (5). First find X = 2 sin 8, then divide this 

result by tan 8 to get R. For Essmple: 

1 .2 l i "  = 1.2 sin 7" / tm  7" + j 1.2 sin 7" = 1.19 + j 0.1462 - 
(B) Whcn 0 > 45", usc (6). First find R = Z cos 8, then multiply 

1.2I70" = 1.2 cos 70" + j (1.2 cos 70") lan 70" = 0.410 + j 1.128 

Tlie rc:t(kr, having rccognizcd that the trigonometric scales are used 
exactly as C or CI scdes for multiplication and division, will check the 
above csnmpics without tiificulty. He mill observe that such problems 

this rcwilt by tan 8 to gct X. For es:tmple: 

__ 
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are solved with three motions: set slide, set hairline, set slide. As a 
check on proper procedure, he should have worked as follows: 

Procedure A: Note that the angle is less than 45'. Therefore, find 
the imaginary component first. Set the index of C to 1.2 on D; set the 
hairline to 7" on S; read X = 0.1462 under hairline on 11; move slide 
to bring 7" on T (black) under hairline; read R = 1.10 on D under 
index of C. 

Procedure B: Note angle is greater than 45". Therefore. find rea1 
component first. Set the index of C to 1.2 on D; set the hairline to 70" 
on Cos; read R = 0.410 under hairline on D; move slide to bring '70" 
on T (red) under hairline; read X = 1.128 on D under index of C. 

I n  practice, procedures A and B are almost identical. It is only news- 
sary to  watch the first multiplication, using the S scale in the one case 
and the Cos scale in the other. 

EXERCISES 
Convert the following polar form phasors to rectangular form: 

199. 1.2144" 
200. 9130T - 
201. 91-30' 
202. 0.02 129.2" - 

204. 36.2 1 10" 
203. 0.02 I - 29.2" 

- 

205. I.2jlG" 
206. 0 __ GO"- 
207. 91 -GO0 
208. 0.02 iC,0.S0 
209. 0.02 ' - (i0.S" 
210. 3G.2 ! 80' 

Rules A and B may now be summarized in a single incluaive rule: 
(C)  To convert a polar phasor to  complex form, find first the smaller 

component by multiplying Z by sin 8 or cos 0 as the case may require; 
then divide or multiply by tan 6 as the case may require. 

The application of Rule C is extremely easy to master since the slide 
rule settings take the same form whether 8 is less than or greater than 
45". The reader should repeat exercises (199) to (210) with rule C in 
mind. The slide rule settings will be: Set an index of C to Z on D. Set 
hairline to sin 0 (e < 45") or to cos 8 (8 > 45"). Read X (8 < 4.5") or 
R ((3 > 45") on D under hairline. Move slide until 8 u ~ i  T (t)lacli or red), 
is under hairline. Read R (0 < 45Oj or S (0 > 45"j on D a t  an indvy 
of c. 

Exercises (199) to (210) included only angles between 5.73" and 84.27". 
There is no difficulty in placing the decimal point in these casts since 
within this range all components, whether real or imaginary, must lie 
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])et \VCUI 0. I % :~nd I .O Z. The next step is to extend the range to very 
sni:dI :tnRlcs. 

Polar Phasor to Rectangular Phasor for Angles less than 5.73". 
'l'lic conwpts cxprcsscd in rule C may be applied unchanged. Hence, 
l i r i t l  1)11(. sltott si& l)y mrdt,iplying Z hy sin 8, using angles on scale ST 
(l)l:t(*l;). IIo\vcvc:r, wlicn tlic second step is takcn, ;.e., the division of X 
I'J' t:m 0, i t  will I)(: :tpparent that the result will be R = 2. That is to 
s;:~y, f o r  :~ri&s less t ~ h : ~ n  5.73", the rcal or resistive component of 2 is 
equal t o  %. I t  is only necessary, then, to calculate X, the short side of 
tlic: f i i : t n g I ( b .  

1Cs:iinpIc~: 
1 . 2 E  = 1.2 + j 1.2 sin 5" = 1.2 + j 0.1047 

It, shoriltl 1x1 rcmcml)crcd that the range of the ST scale is from 0.01 
on 1 1 1 0  Ic4tt 1.0 0.1 011 tlic riglit. Hence, the X component lies between 
0.01 z :1nd 0.1 Z. 
'I'h lo\vcr limit of ST in terms of angle is 0.573", found near the left 

c w l .  'I'lic n:tkirc of this scale is such that we can begin again at the 
right, cwt l  witti 0.573" and range on down to 0.0573" at the left end, 
inc!rcly by moving t,hc decimal point one place to  the left, in both 8 
and sin 0. In  this w:iy, the conversion from polar form to rectangular 
form may I)c made for anglcs as near zero as we please. This cyclic 
fc;tl,iii.c of the ST sc:aIc results from the fact that it is based on the 
approsim:tlion (valid to slidc rule accuracy for angles less than 5.73") that 

8 (in radians) = sin 8 = tan 8 

Thc sc.:ilc gives correct values of 8 in radians when used with the 
C s(-;tIc. Conscqucntly, tliere is a small but innocuous error in the values 
o f  sin 0 and tnn 8 its read from thc C scale for angles near the 5.73" 
limit of Sl'. The reader should insure his own confidence in the ST scale 
i)y cwmparirig values of sin t) and tan 8 taken from i t  with corresponding 
valiiw t'orintl in trigonometric tables. 

Examples : (Thc first is repeated for comparison) 
1.315" = 1.2 + j 1.2 sin 5" = 1.2 + j 0.1047 
1.2 Fi" = 1.2 + j 1.2 sin 0.7" = 1.2 + j 0.01467 
1.2/0.5" = 1.2 + j 1.2 sin 0.5" = 1.2 + j 0.01047 
1.2/0.0'7" = 1.2 + j 1.2 sin 0.07" = 1.2 + j 0.001467, etc. 

__ 

- 
- 

The dccimal point in X is moved to the left as many places 
as the decimal point in 8 is moved. Another way of expressing this 

I 
i 

i 

I 
I 

I 
I 
i 

I 

I 
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relationship is-the range of the ST scale is multiplied by lo-' every 
time the decimal point is moved one place to the left in the angular 
markings of this scale. 

EXERCISES 
Convert to complex form: 

-21 1. 4,200 12.5" 
212. 4,200 10.25' 
213. 4,200 10.025' 

- 
- 

Polar Phasor to Rectangular Phasor for Angles greater than 
84.27". Here again, the long side of the triangle, in this citce S, is to bcb 
taken equal to Z. The short side is calculated according to Rulr. C from : 

R = Z cos 8 = Z/sec 8 

9/88" = 9/sec 88" + j 9 = 0.314 + j 9 

Here the setting employed is: Right index of slide to 9; hairline to 
88" on Sec T (red); read R = 0.314 under hairline on C. The hecant 
scale is essentially a CI scale, hence it is employed for division like a 
CI scale. In other words, the proper view point to hold for angles greater 
than 84.27" is still to find the real component by multiplying Z by cos 8. 
When the attempt is made on the slide rule, a secant scale is found in 
place of a cosine scale in this range of angles. So we divide by ser e as 
the equivalent of multiplying by cosine 8. 

The cosine scale covers the range of angles from 0" to 84.26" and of 
cosines from 1.0 to 0.1. The left end values of 84.26" and cosine = 0.1, 
are equivalent to 84.26" and secant = 10.0. The Sec T (red) sc.ale 
begins with 84.27" at its right end and extends to 89.427" and secant = 
100.0 (cosine = 0.01) at the left end. Like the ST scale, this scale can 
be used repeatedly for angles nearer and nearer to 90". For each re- 
cycling, the fractional part 427 is to be moved one decimal place to the 
right and the vacated place replaced by a nine (9) as summarized in 
the following table: 

Example : 
- 

See T (red) Scale: 
Left end Right end 

Given range: sec 89.427" = 100 sec 84.27" = 10.0 
Second range: sec 89.9427' = 1000 sec89.427" = 100 
Third range: see 89.99427' = 10000 sec 89.912i' = lo00 

etc. 
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Examples : 
1.2185" = 1.3/scc 85" + j 1.2 = 0.1047 + j 1.2 
1 ?IS!) 3" = 1.2/sec 88.3" + j 1.2 = 0.014GG + j 1.2 
1.2IS!~.5" = 1.2/sec 89.5" + j 1.2 = 0.01037 + j 1.2 
1.2iS!I.!G" = 1.2/scc 89.83" + j 1.2 = 0.0014G6 + j 1.2 

EXERCISES 

2 14. 4,200 I 87.5" 
215. 4,200 18O.75" 

- 

-_ 
vlc. 

C ~ n v ~ r i  to comples form: 
- 

21K 4,200/ 89.975" 

Phasors Not in First Quadrant. (Conversion from polar to rec- 
tniigular form.) In  clcrtricnl problems phasors frequently appear at 
:~ngli.s grcxtc'r than OO", i.e., in thc sccond, third, and fourth quadrants. 
Line potcml in1 differcnccs and currents at various points along a trans- 
mission linc may lag several quadrants behind the input voltage. 
Tr:msfcr intl)ctlanccs may have any angle whatever. (A transfer im- 
i)etlnnc*c. is clcfincd as the ratio of a source potential difference applied 
in onc 1)ranch of a network to the current in some other branch.) Such 
prol)lcms :iw 1)rought within the scope of the preceding discussion of 
t lw first (lti:i(lr:mt by the method illustrated in the following example. 

630 A transfer impedance is known in 
polar form as G30 ohms at angle 128". 
Find its real and reactive components. 

The rccommcnded procedure is to  draw 
a sketch in polar form as shown in the 

+ R  diagram. Calculate the angle 0, the 
srnaII(~ :ingle made by the phssor with 
thc Iiorizontd axis. 

Determine It and X by the methods 
esphincd for the first quadrant and give 
these components the proper sign as in- 
clicated in the sketvh. 

l h : l I N p l ~ ~  1 .  pJ /z8j 

u l  -8 

- X  
Fig. 38. 

p = IS()" - 128" = 52" 
G30 /52" = Ci30 cos 52" + j(li30 cos X")(tun 52") = 388 + j 497 
5301 11's" = -38s + j 3!)7 

__ 

-__ 
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Example 2. 

630/218" = R + jX. Find I< and X. - 
+X 

-X 

Fig. 39. 

/3 = 218" - 180" = 38" 
630)38" = ((330 sin 38")/tan 38" + j G30 sin 38" = 19; + j 358 
6301218" = -497 - j 388 

__ 

- 
t 

Example 3. 

6301308" = R + jX. Find R and X. - 
+X 

-x 
Fig. 43. 

/3 = 360" - 308" = 52" 
630) - 52" = 630 cos 52" + j(630 cos 52") tan 52" = 388 + j 497 
6301308" - = 388 - j 497 



EXERCISES 
Coti\x>i.t- I t i(> I'ollowing phasors tlo complex form : 

220. 220 1332" - 217. 22OI(i2" 

218. 2201 __ 152" 
2 LO. 220 1242" 

221. 220 [ - 28" 

11. Rectangular Phasor to Polar Phasor. 
'l'hc prot)loni is the inverse of that stilted at  the beginning of section I, 

ant1 will I)(: I t a n t l i c d  hy the samc rclations, i.c., equations (5) and (6), 
r(~:Lrr:lri~cd ;1s follows: 

' X/IL = tan @/I = tan @/tan 45'; 2 = X/sin e 
11/X = I/i,an o = tan 45"/tan 8; 3 = R/cos e 

(7) 
(8) 

l<AIiI:it i o r i  (7) is to I)c used when 8 < 45". 
I < ; ( ~ ~ I : I !  i o r i  (8) is to hc uscd when 0 > 45". 
T \ v o  ( ~ \ : t i r t  \ )ICS c;urietl through in parallel form will illustrate the two 

x * z s  

Fig. 41. 

Find o rising the proportion 

Sctt ings: 1I:Lirline to 2.5 on D. 
Indr.; o f  slid(. to 4.33. 

Thc lrairline is now located at 
(i0"/30" on 'l'; choose 8 = 30" b o  
cause x < I{. 

X/11 = tan ()/tan 45" 

Find Z wing Z = X/sin 8. 
Svttirtgs: 'l'ltc hairline is already 

on S on t I t c  I )  scale. Move slide to 
bring sin 30" under h:~irline. Itead 
Z = 5 on 1) uncler index of slide. 

I t  + j X  = 2.5 + j 4.33 

L R - 2 . 5  

x94.33 

Fig. 42. 

Find 8 using the proportion 
R/X = tan 45"/tan 8 

Settings: Hairline to 2.5. Index 
of slide to 4.33. 

The hairline is now located at 
6O0/3Oo on T; choose 8 = 60" be- 
cause X > R. 

Find Z using Z = R/cos 8. 
Settings: The hairline is already 

on R on the D scale. Move slide t o  
bring cos 30' under hairline. Read 
Z = 5 on D under index of slide. 
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If the reader will carry out the operations just deacribcd, he nil1 3ee 
that  the two cases rpswltd in idenficaI slide rule s d f i n y s  t h r o u g h i t .  
Differences appear only in the interpretation of the settings. Thus, to 
determine the angle, a choice had to be made between 30" and its com- 
plement, GO". This choice should be made solely as a result of viaualiza- 
tion of the triangle: If X < R, choose the smaller angle. If S > R, 
choose the larger angle. 

Again, in finding Z after e was known, a choice had to he made be- 
tween dividing the hairline setting by sin e or by cos 8. Again, the choice 
is made by visualizing the trigonometry involved: Ii hairline is on X, 
divide by sin 8, (sin 30") If hairline is on R, divide by C O ~  0. (cos 60") 
Since sin 30" = cos GO", these two settings were identical. The r e d e r  
is now in a position to appreciate the following: 

Rule D: To find ZI 8 when the two components I{ arid S ;ire given: - 
1. Set the hairline to the smaller component on D. 

2. Set an index of the slide to the larger component on I). L-nder the 
hairline, read the angle on T (black or red) selecting t!w proper 
angle by visualization of the triangle. 

3. Leaving the hairline on X or on R as the case may he. divide S 
by sin 8 or R by cos 8 to get Z. (Bearing in mind that tht  S and 
Cos scales are fundamentally C scales the user can readily de- 
termine how to perform the division.) 

Examples : 
1.19 + j O.IJ[j? = 1.20 7" 

0.1253 f j 1.193 = 1.20 84" ~ 

0.863 + j 0.834 = 1.20144" - __ 
0.411 + j 1.128 = 1.20170" - 

EXERCISES 

Convert the following phasors to polar form: 

228. 0.834 + j 0.863 
229. 4.5 + j 7.8 
230. 4.5 - j 7.8 
231. 0.00976 + j 0.01745 
232. 6.29 + j 35.63 

222. 0.863 + j 0.834 
223. 7.8 + j 4.5 
224. 7.8 - j 4.5 
225. 0.01745 + j 0.00976 
226. 0.01745 - j 0.00976 
227. 35.65 + j 6.29 

I 



108 ( ON\ I ,  IiSIONS--ShlAII,IA A K D  LhIlGIi: ANGLIiS 

Rectangular Phasor t o  Polar Phasor for Small and for Large 
Angles. Iri ihv foregoing problems the  ratio X/It = tan 8 or R/X = 
1 /im 0 IS limited to the range I .O to 10.0, coriesponding to angles be- 
tween 5.7 l O ant1 84.29". It is important to estend the range toward 0" 
:mti !W. Tlic slide rule user must he c.onstantly alert for the following 

l V h ( ~ i  S/lt < 0.1, tlir angle must hc read on ST instead of on T. 
Wlwn 12 LS < 0.1, the angle must be read on Sec T (red) instead of 

on 'L' (rvcl). 
In ( ~ i t h i ~ r  (YLSC the magnitude of 2 is taken equal to the larger of the 

1 \vo c*oitiporic~nts. 

1.2 + j 0.1047 = 1.215' Example 1. 

Ilrrc 0 = 5" is read from the ST scale since 0.OlR < X < 0.1 R, 
indiwtiit:: that 0.01 < tan E) < 0.1. The highest range of ST is from 
0.0 1 to 0.1. For :dl v:ilucs of 8 on the ST scale, the approximation is 
macle i l l a t  xiri 0 = tan 0. Thercfore, Z equals the larger component, 1.2. 

(':lhf'h : 

- 

Example 2. 

1 I o i . c ~  ,LqCtiii 0.01 I t  < X < 0.1 11, lirnce the ST scde is read without 
chnnp oI i h ~ * i i i i : t I  point. This angle is near the end of what might be 

1.2 + j 0.014G(i = 1.210.7" - 

callcrl :I I l l > (  cycle over ST. 

Example 3. 

IIri.c> 0 001 I< < S < 0.01 R. IIencc c) is read from the ST scale but 
ititti  t h c b  t lwirn:il point moved one place to left. This angle is in and 
near t l w  Iwyniiing of  a second (sycle over ST. 

1.2 + j 0.0014(ili = 1.2(0.07" _I_ 

1.2 + j 0.01047 = 1.2/0.6" - 

Example 4. 

T I i i y  I-. , i i i i i l : i i .  to example 3. The angle is in and near the end of the 
h l ~ ~ * l ~ l l ~ l  I V( Ict o\ ( 'r  ST. 

Example 5. 

T T P I Y ~  i1w ST s ( d c  tlccimnl points will be moved two places to the 
Idt. 7'111. : I I I $ I >  is in :ind near the beginning of a third cycle over ST. 

1.2 + j 0.001047 = 1.210.05" 

Example 6. 

In i l i i ,  c,\:tmplc thc ST scale decimal points will ag:kin be moved two 
pl:iccs to tlic lclt. This angle is in nncl near the end of a third cycle 
0 1  ( ' I  s-r. 

1.2 + j 0.0001466 = 2.2 l0.007" 
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Example 7. 0.1047 + j 1.2 = 1.2185" - 
In examples 1 to 6, X < R, requiring the use of ST. Here X > R  

which requires the use of Sec T (red). Angles are read without change 
of decimal point when 0.01 X < R < 0.1 X. In  example 7 the angle is 
in and near the beginning of a first cycle over Sec T (red) approaching !IO". 

Example 8. 0.01466 + j 1.2 = 1.2189.3" - 
This is similar to example 7. The angle is in and near the end of a 

first cycle over Sec T (red), approaching 90". 

Example 9. 0.01047 + j 1.2 = 1.2189.5" - 
Here the hairline will be near the beginning of a serond cyc.lc over 

Sec T (red). In example 7 we were 5" short of 90". Here \re are 0.5" 
short of 90". 

Example 10. 0.001466 + j 1.2 = 1.2189.93" 

In example 10 the hairline will be near the end of a sesond cycle 
over Sec T (red). I n  example 8 we were 0.7" short of 90". Here we 
are 0.07" short of 90". 

EXERCISES 
Convert the following phasors to polar form: 

233. 4,200 -I- j 183.2 
234. 4,200 + j 18.32 
235. 4,200 + j 1.532 
236. 0.314 + j 0 

237. 183.2 + j 4,200 
238. 18.32 + j 4.200 
239. 1.832 + j 4,200 

For rectangular form t o  polar form for angles not in tlic fir-t (lii:uJrant, 
the reader should refer back to the corresponding pro1)kni i i i  (,(inversion 
from polar form to rcctangular form. The angle p is to 1 x 2  f 'ou11~1  ! ~ y  the 
method just developed. Inspection of the diagram will then reveal how 
to find 0. 

EXERCISES 

Convert the following phasors to polar form: 
240. 103.3 + j 194.2 
241. -194.2 + j 103.3 

242. -103.3 - j 194.2 
243. 191.2 - j 103.3 



ANSWERS TO EXERCISES 

Multiplication 

I .  7.25 
2. 4.4s 
3.  2 0 3  
4. 3.35 
5. 2:<.4 
0. :$0.5 
7. 25.S 
S. 1.Mi 
!I. 75.2 

10. liS.2 
11. 4 i . G  
12. :m:< 

~ ~ s c  D ii11t1 CI sc:alcs, cxeiciscs 1 to 6. 

Iiso DIT atid CII4' scales, exercises 7 to 12. 

13. 1OS.7 
14. 224 
15. l,!)!)O 
16. (io5 
17. X , : l i O  
IS. 4,050 

1Jsv 1) and CI sc*dcs or DI' and CIF, exercises 13 to 18. 

Division 

I!). 3.02 
20. 2,s:) 
21. 234 
22. 23.3 
23. 23.4 
21. 4.48 
25. 4.27 
20. 8.14 
27. O.O(i50 
2s. 0.444 
2!). 43.3 
20. 20.6 
31. 1,431 
32. 1.670 
33. 2.1 1 
34. os40 
35. 7.87 
36. IS-i.O 

[Jsc 1 1  :iritl  C si:ILIcs, cxcvisc-s 19 to 24. 

Ilzc DIP ani1 GI? sc&s, c1xcrc:iscs 25 to  30. 

Ilse D and C zcalcs or DF and CF, excreises 31 to 36. 
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Products of a Series oi Factors 
37. 121.4 
38. 255 
39. 5,520,000 
40. 0.303 
41. 0.506 
42. 2.77 
43. 0.611 
44. 0.0605 
45. 0.1644 
l(i. 0.805 

A Single Factor Multiplied by a Series of Numbers 
47. 368; 774; 1,018; 1,440; 1,734; 2,200; 2,550; 2,580; 3.070. 
48. 7.04; 3.34; 2.18; 1.718; 1.266; 1.120; 0.915; 0.820; 0.769. 

Proportion 
40. 3.48 
50. 1.328 
51. 3.97 
52. 181.2 
53. 6.09 

Quadratic Equations 
,i4. -34.0 and -0.53 
55. 19.5 and 1.64 
56. 25.0 and -4.8 
57. -23.6 and -17.8 
58. 6.6 and 4.55 

Square Roots and Squares 
59. 2.45 
60. 5.106 
61. 30.4 
62. 35.57 
63. 267.4 
64. 905 
65. 1,404 
66. 7,140 
67. 416 
08. 51,100 
F9. 1,145,000 
70. 15,730 
71. 0.722 
72. 0.00884 
73. O.ooOo578 
74. 0.0000000246 
75. 0.651 
76. 0.2958 
77. 0.0851 
78. 0.003065 
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Areas of Circles 
i!). O.@I!J2; 0.1 105; 0.19Ci3; 0.307; 0.602; 0.785. 

Cube Root and Cubes 
SO. IS17 
SI. 2.ss 
s2. 6.46 
s:L 1.1.9s 
$4. :m.7 
55. s3.4 
Mi. 32.5 
87. G,!MM) 
XH. 422.000,OOO 
S!). O.(iS-l 
00. O.:M6 
!)I. 0.1957 
92 0.01.17 
9:$. O.(HMH).l(i7 
94. O.OOOOOOI11 

Powers of e 

Reciprocals 
97. 0.0t)OI 17; 0.00133; 0.0156; 0.1175; 1.0515; 13.25; 178; 7,100. 

Hyperbolic Functions 
! )S. 0.101 
!I!). 10.02 

100. 1. 10:; 
1 0 1 .  o.:i:3ti 
102. 0 ! ) i 1  
lo:$. 2.!b 
101.  0.59 
1 trl. I . ' ) ! I  
loti .  0.7s 
107. 1 ..ii 
10s. o.:i1 

Powers of Numbers 
lo!), 1.00525 
110. l . i  l i ? ,  
1 I I .  ti.07 
112. 15.2 
1 1:i. O.!I!)493 
I I  I .  0.717 
I 15. 0.005s 
1 I C i .  0.57s 
1 17. 0.0 IO!) 
11s. O.-l11 
l1!1.  I .:s7 
120. 1.00915 
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Exponential Equations 

121. 1.267 
122. 3.62 
123. 5.50 
124. 4.74 

Natural Trigonometric Functions 

125. 0.970 
126. 0.814 
127. O.2tiG 
128. 0.0157 
129. 0.0673 
1.70. 0.S24 
131. 0.2lj4 
132. 0.1132 
133. 0.2S1 
134. 1.163 
135. 4.51 
136. 8.85 
137. 81.8 
138. 35.8 
139. 0.0419 

Solution of Triangles 

140. A = 21.7'; U = 68.3'; c = 24.3'. 
141. a = 53.8'; c = 54.9'. 
142. A = 25.6"; II = 45.8"; C = 108.6". 

Complex Numbers 

143. 
114. 
i I.;. 16.6 ~ i . 3 2 ~ 4 ' .  

x = 9.87; y = 13.60. 
x = 18.71; y = 9.54. 

Applications to Civil Engineering 

146. (:I) 10,200 cu. ft.; (b) 10,060 CU. ft. 
147. 4383s ft. 
148. 
119. 187.4 ft. 
1.50. 220 ft. 
151. 

243 ft.; N. 22.77' W. 

(a) V = 95.2 ft.; H = 526 ft: 
(b) V = 27.8 ft.; H = 211 f t .  
(c) V = 135.5 ft.; H = 378 ft. 

1.52. (a) R = 848 ft.; D = 6.76"; I F 14.1". 
(b) R = 481 ft.; D = 11.94"; I = 17.58". 
(c) R = 373 ft.; D = 15.40"; I = 9.47". 

(b) C = 11'-6"; R = 10%". 
(c) C = 15'-6%"; R = 32$$". 

( I , )  R = llw. 

153. (a) C = 5'-2%; R = 73/is". 

154. (I*) R 101x6". 

( c )  n = 5%". 
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Applications to Mechanical Engineering 

Applications to Electrical Engineering 
I S l .  
1s2. 
1 s:<. 
1s-1. 
1 s5. 
1st;. 
1 s .  
1%. 
1 S!). 
l!m. 
]!I]. 
1!)2 
I:):i. 
l!M. 
1!)5. 
l!Ni 
1!)7. 
19s. 

199. O.SB3 + j 0.S34 
200. 7.80 + j 4.50 
201. 730 - j 4.50 
202. 0.01745 + j 0.00976 
203. 0.01745 - j 0.00976 
204. 35.6 + j 6.29 
205. 0.834 + j 0.863 
2Oli. 4.50 + j 7.80 
207. 4.50 - j 7.80 
208. 0.00976 + j 0.01745 
209. 0.00976 - j 0.01745 
210. 6.20 + j 35.(i 
211. 4,200 + j 153.2 
212. 4,200 + j 15.32 
213. 4,200 + j 1.532 
214. 153.2 + j 4.200 
215. 1S.32 + j 4,200 
216. 1.832 + j 4,200 
217. 103.3 + j 194.2 
218. -194.2 + j 103.3 
219. -103.3 - j 194.2 
220. 194.2 - j 103.3 
221. 194.2 - j 103.3 
222. 1.2 144" 
223. 9.0 130" 

225. 0.02 120.22" 

227. 36.2 110" 

228. 1.2 (46" 

- 
224. 9.0 (-.10" 

226. 0.02 1 -29.22' 

- 
229. 9 @ 7  
230. 91-(,0" 
231. 0.02 l(i0.8" 
232. 36.2 @ 
233. 4,200 E 
234. 4,200 
235. 4,200 10.025" 
236. 9 188'' 
237. 4,200 
238. 4,200 189.75" 

239. 4,200 (89.975" 

- 

~ 

- 

240. 220 162" 
241. 220 1152' 

242. 220 1242" 
- 

243. 22017320 
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